
USB Audio Design Guide

Document Number: XM0088546.1

Publication Date: 2016/5/12

XMOS © 2016, All Rights Reserved.

USB Audio Design Guide 2/110

SYNOPSIS

The XMOS USB Audio solution provides USB Audio Class compliant devices over USB 2.0 (high-
speed or full-speed). Based on the XMOS XS1 architecture, it supports USB Audio Class 2.0 and
USB Audio Class 1.0, asynchronous mode and sample rates up to 384kHz.

The complete source code, together with the free XMOS xTIMEcomposer development tools
and XCORE multi-core micro-controller devices allow the implementer to select the exact mix of
interfaces and processing required.

The XMOS USB Audio solution is deployed as a framework with reference design applications
extending and customising this framework. These reference designs have particular qualified
feature sets and an accompanying reference hardware platform.

This software design guide assumes the reader is familiar with the XC language and xCORE devices.
For more information see XMOS Programming Guide1.

The reader should also familiarise themselves with the XMOS USB Device Library2 and the XMOS
USB Device Design Guide3

The reader should always refer to the supplied CHANGELOG and README files for known issues
etc in a specific release

1https://www.xmos.com/published/xmos-programming-guide
2http://www.xmos.com/published/xuddg
3https://www.xmos.com/zh/node/17007?page=9

XM0088546.1

https://www.xmos.com/published/xmos-programming-guide
http://www.xmos.com/published/xuddg
https://www.xmos.com/zh/node/17007?page=9

USB Audio Design Guide 3/110

Table of Contents

1 Overview 5

2 Hardware Platforms 6
2.1 xCORE-200 Multi-Channel Audio Board . 6

2.1.1 Analogue Input & Output . 7
2.1.2 Digital Input & Output . 7
2.1.3 MIDI . 7
2.1.4 Audio Clocking . 7
2.1.5 LEDs, Buttons and Other IO . 7

2.2 xCORE-200 Microphone Array Board . 8
2.2.1 Microphones . 9
2.2.2 Analogue Output . 9
2.2.3 Audio Clocking . 10
2.2.4 Buttons, LEDs and Other IO . 10

2.3 USB Multi-function Audio (MFA) Kit . 12
2.4 U16 Multi-Channel USB Audio Kit . 13
2.5 USB Audio 2.0 DJ Kit . 14
2.6 USB Audio 2.0 Reference Design Board . 14
2.7 USB Audio 2.0 Multichannel Reference Design Board 15

3 Software Architecture 17
3.1 The USB Audio System Architecture . 18
3.2 XMOS USB Device (XUD) Library . 18
3.3 Endpoint 0: Management and Control . 20

3.3.1 Enumeration . 20
3.3.2 Over-riding Standard Requests . 21
3.3.3 Class Requests . 21

3.4 Audio Endpoints (Endpoint Buffer and Decoupler) 22
3.4.1 Endpoint Buffer . 22
3.4.2 Decoupler . 23
3.4.3 Audio Buffering Scheme . 23
3.4.4 Decoupler/Audio Core interaction . 23

3.5 Audio Driver . 25
3.5.1 Port Configuration (xCORE Master) . 27
3.5.2 Changing Audio Sample Frequency . 28

3.6 Digital Mixer . 28
3.6.1 Control . 29
3.6.2 Host Control . 29

3.7 S/PDIF Transmit . 31
3.7.1 Clocking . 32
3.7.2 Usage . 33
3.7.3 Output stream structure . 33

3.8 S/PDIF Receive . 33
3.8.1 Usage and Integration . 34

3.9 ADAT Receive . 35
3.9.1 Integration . 36

3.10 External Clock Recovery (ClockGen) . 36
3.11 MIDI . 37
3.12 PDM Microphones . 37

XM0088546.1

USB Audio Design Guide 4/110

3.13 Overview of PDM implemention . 37
3.13.1 PDM Microphone Hardware Characteristics . 38
3.13.2 Integration of PDM Microphones into USB Audio 39

3.14 Resource Usage . 40

4 Features & Options 41
4.1 Device Firmware Upgrade (DFU) . 41
4.2 USB Audio Class Version Support . 41

4.2.1 Driver Support . 42
4.2.2 Audio Class 1.0 Mode and Fall-back . 42

4.3 Audio Controls via Human Interface Device (HID) 43
4.4 Apple MFi compatibility . 44
4.5 Audio Stream Formats . 44

4.5.1 Audio Subslot . 45
4.5.2 Audio Sample Resolution . 45
4.5.3 Audio Format . 46

4.6 DSD over PCM (DoP) . 46

5 Programming Guide 48
5.1 Getting Started . 48

5.1.1 Building and Running . 48
5.1.2 Installing the application onto flash . 49

5.2 Project Structure . 50
5.2.1 Applications and Modules . 50

5.3 Build Configurations . 50
5.4 Validated Build Configurations . 51
5.5 Configuration Naming Scheme . 51
5.6 A USB Audio Application . 51

5.6.1 Custom Defines . 52
5.6.2 Configuration Functions . 53
5.6.3 The main program . 55

5.7 Adding Custom Code . 58
5.7.1 Example: Changing output format . 59
5.7.2 Example: Adding DSP to output stream . 59

6 USB Audio Applications 61
6.1 USB Audio 2.0 Reference Design (L-Series) Application 61

6.1.1 Port 32A . 62
6.1.2 Clocking . 63
6.1.3 HID . 64
6.1.4 Validated Build Options . 65

6.2 The USB Audio 2.0 DJ Kit (U-Series) . 66
6.2.1 Clocking and Clock Selection . 67
6.2.2 CODEC Configuration . 67
6.2.3 U-Series ADC . 67
6.2.4 HID Example . 67
6.2.5 Validated Build Options . 68

6.3 The USB Audio 2.0 Multichannel Reference Design (L-Series) Software 69
6.3.1 Clocking . 71
6.3.2 Validated Build Options . 71

6.4 The Multi-function Audio Kit (U-Series) . 72
6.4.1 Clocking and Clock Selection . 72

XM0088546.1

USB Audio Design Guide 5/110

6.4.2 DAC and ADC Configuration . 73
6.4.3 U-Series ADC . 73
6.4.4 HID Example . 73
6.4.5 Validated Build Options . 76

6.5 The U-Series Multi-Channel USB Audio Kit . 77
6.5.1 Clocking and Clock Selection . 77
6.5.2 DAC and ADC Configuration . 78
6.5.3 AudioHwInit() . 78
6.5.4 AudioHwConfig() . 78
6.5.5 Validated Build Options . 79

6.6 The xCORE-200 Multi-Channel Audio Board . 79
6.6.1 Clocking and Clock Selection . 80
6.6.2 DAC and ADC Configuration . 80
6.6.3 AudioHwInit() . 81
6.6.4 AudioHwConfig() . 81
6.6.5 Validated Build Options . 82

6.7 The xCORE-200 Array Microphone Board . 82
6.7.1 Clocking and Clock Selection . 83
6.7.2 DAC Configuration . 84
6.7.3 AudioHwInit() . 84
6.7.4 AudioHwConfig() . 84
6.7.5 Mic Processing Example . 84
6.7.6 Validated Build Options . 85

7 API 86
7.1 Configuration Defines . 86

7.1.1 Code location (tile) . 86
7.1.2 Channel Counts . 87
7.1.3 Frequencies and Clocks . 87
7.1.4 Audio Class . 88
7.1.5 System Feature Configuration . 89
7.1.6 USB Device Configuration . 91
7.1.7 Stream Formats . 92
7.1.8 Volume Control . 96
7.1.9 Mixing Parameters . 97
7.1.10 Power . 98

7.2 Required User Function Definitions . 98
7.2.1 External Audio Hardware Configuration Functions 98
7.2.2 Audio Streaming Functions . 99
7.2.3 Host Active . 99
7.2.4 HID Controls . 100

7.3 Component API . 100

8 Frequently Asked Questions 110

XM0088546.1

1 Overview

XM0088546.1

USB Audio Design Guide 7/110

Functionality

Provides USB interface to audio I/O.

Supported Standards

USB USB 2.0 (Full-speed and High-speed)

USB Audio Class 1.04

USB Audio Class 2.05

USB Firmware Upgrade (DFU) 1.16

USB Midi Device Class 1.07

Audio I2S/TDM

S/PDIF

ADAT

Direct Stream Digital (DSD)

PDM Microphones

MIDI

Supported Sample Frequencies

44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz, 352.8kHz, 384kHz

Supported Devices

XMOS Devices xCORE-200 Series

XS1 L-Series

XS1 U-Series

XS1 G-Series (Not recommended for
new designs)

Requirements

Development Tools xTIMEcomposer Development Tools
v14 or later

USB External ULPI USB Phy (If using XS1
G/L-Series)

Audio External audio DAC/ADC/CODECs
(and required supporting
componentry) supporting I2S/TDM

Boot/Storage Compatible SPI Flash device

Licensing and Support

Reference code provided without charge under license from XMOS.

Please visit http://www.xmos.com/support/contact for support.

Reference code is maintained by XMOS Limited.

4http://www.usb.org/developers/devclass_docs/audio10.pdf
5http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip
6http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
7http://www.usb.org/developers/devclass_docs/midi10.pdf

XM0088546.1

http://www.xmos.com/support/contact
http://www.usb.org/developers/devclass_docs/audio10.pdf
http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/devclass_docs/midi10.pdf

2 Hardware Platforms

IN THIS CHAPTER

· xCORE-200 Multi-Channel Audio Board

· xCORE-200 Microphone Array Board

· USB Multi-function Audio (MFA) Kit

· U16 Multi-Channel USB Audio Kit

· USB Audio 2.0 DJ Kit

· USB Audio 2.0 Reference Design Board

· USB Audio 2.0 Multichannel Reference Design Board

The following sections describe the hardware platforms that support development
with the XMOS USB Audio software framework.

2.1 xCORE-200 Multi-Channel Audio Board

The XMOS xCORE-200 Multi-channel Audio board8 (XK-AUDIO-216-MC) is a com-
plete hardware and reference software platform targeted at up to 32-channel USB
and networked audio applications, such as DJ decks and mixers.

The Multichannel Audio Platform hardware is based around the XE216-512-TQ128
multicore microcontroller; an dual-tile xCORE-200 device with an integrated High
Speed USB 2.0 PHY, RGMII (Gigabit Ethernet) interface and 16 logical cores deliver-
ing up to 2000MIPS of deterministic and responsive processing power.

Exploiting the flexible programmability of the xCORE-200 architecture, the Multi-
channel Audio Platform supports either USB or network audio source, streaming 8
analogue input and 8 analogue output audio channels simultaneously - at up to
192kHz. Ideal for mixing two sources and providing main and headphone monitor
output feeds.

For full details regarding the hardware please refer to xCORE-200 Multichannel
Audio Platform Hardware Manual9.

The reference board has an associated firmware application that uses the USB
Audio 2.0 software reference platform. Details of this application can be found in
section §6.6.

8https://www.xmos.com/support/boards?product=18334
9https://www.xmos.com/support/boards?product=18334&component=18687

XM0088546.1

https://www.xmos.com/support/boards?product=18334
https://www.xmos.com/support/boards?product=18334&component=18687

USB Audio Design Guide 9/110

2.1.1 Analogue Input & Output

A total of eight single-ended analog input channels are provided via 3.5mm stereo
jacks. Each is fed into a CirrusLogic CS5368 ADC. Similarly a total of eight single-
ended analog output channels are provided. Each is fed into a CirrusLogic CS4384
DAC.

The four digital I2S/TDM input and output channels are mapped to the xCORE
input/outputs through a header array. The jumper allows channel selection when
the ADC/DAC is used in TDM mode

2.1.2 Digital Input & Output

Optical and coaxial digital audio transmitters are used to provide digital audio
input output in formats such as IEC60958 consumer mode (S/PDIF) and ADAT. The
output data streams from the xCORE-200 are re-clocked using the external master
clock to synchronise the data into the audio clock domain. This is achieved using
simple external D-type flip-flops.

2.1.3 MIDI

MIDI I/O is provided on the board via a standard Gameport connector. The signals
are buffered using 5V line drivers and are then connected to 1-bit ports on the
xCORE-200, via a 5V to 3.3V buffer.

2.1.4 Audio Clocking

A flexible clocking scheme is provided for both audio and other system services.
In order to accommodate a multitude of clocking options, the low-jitter master
clock is generated locally using a frequency multiplier PLL chip. The chip used is a
Phaselink PL611-01, which is pre-programmed to provide a 24MHz clock from its
CLK0 output, and either 24.576 MHz or 22.5792MHz from its CLK1 output.

The 24MHz fixed output is provided to the xCORE-200 device, as the main pro-
cessor clock. It also provides the reference clock to a Cirrus Logic CS2100, which
provides a very low jitter audio clock from a synchronisation signal provided from
the xCORE-200.

Either the locally generated clock (from the PL611) or the recovered low jitter clock
(from the CS2100) may be selected to clock the audio stages; the xCORE-200, the
ADC/DAC and Digital output stages.

2.1.5 LEDs, Buttons and Other IO

An array of 4*4 green LEDs, 3 buttons and a switch are provided for general
purpose user interfacing. The LED array is driven by eight signals each controlling
one of 4 rows and 4 columns.

A standard XMOS xSYS interface is provided to allow host debug of the board via
JTAG.

XM0088546.1

USB Audio Design Guide 10/110

2.2 xCORE-200 Microphone Array Board

The XMOS xCORE-200 Microphone Array board10 (XK-USB-MIC-UF216) is design
available from XMOS based on a dual-tile XMOS xCORE-200 device.

The board integrates the following building blocks: multiple omni-directional
microphones, on-board low-jitter clock sources, configurable user input buttons
and a USB2.0 device for connectivity. making it an ideal platform for a range of
multichannel microphone aggregation products.

The board is powered by an XUF216-512 xCORE-200 multicore microcontroller.
This device has sixteen 32bit logical cores that deliver up to 2000MIPS completely
deterministically. In addition the XUF216 has powerful DSP properyies with native
32bit/64 instructions delivering up to 1000MMACS.

Figure 1 shows the block layout of the xCORE-200 Microhone Array board.

xCORE
XUF216

Ethernet
PHY

LAN8710A
RJ45

25MHz

TILE CLK to xCore

DAC-MCLK
PLL CLK
Device

CS2100

BUFFERMCLK 24.576
MHz

SMI

MDI

DAC
CS43L21

MEMS mic
AKU441

I2S

I2C

HP

MII

USB
Type-B

1v3v3 2v5

XTAG(J2)

MIC0

MIC4

MIC3

MIC2

MIC1

MIC5

MIC6

MIC-DATA[6:0]

MIC-CLK
Buffer MIC CLK[6:0]

JTAG

LEDs

BUFFER

PUSH BUTTON

D-FF

3.5mm Jack
USB diff pair

24MHz

Figure 1:

xCORE-200
Microphone
Array Board

Block
Diagram

For full details regarding the hardware please refer to xCORE Microphone Array
Hardware Manual11.

The reference board has an associated firmware application that uses the USB
Audio 2.0 software reference platform. Details of this application can be found in
section §6.7.

10https://www.xmos.com/support/boards?product=20258
11https://www.xmos.com/download/private/xCORE-Microphone-Array-Hardware-Manual%281v1%29.pdf

XM0088546.1

https://www.xmos.com/support/boards?product=20258
https://www.xmos.com/download/private/xCORE-Microphone-Array-Hardware-Manual%281v1%29.pdf

USB Audio Design Guide 11/110

2.2.1 Microphones

The xCORE Microphone Array board features 7 MEMS microphones with PDM (Pulse
Density Modulation) output.

Figure 2 shows the microphone arrangement on the board.

MIC6 MIC1

MIC2MIC5 MIC0

A B D

xCORE-200
XUF216

C

MIC4 MIC3
Figure 2:

xCORE-200
Microphone
Array Board
Microphone

Arrangement

2.2.2 Analogue Output

As well at 7 PDM microphones the board also provides a stereo DAC (CS43L21)
with integrated headphone amplifier. The CS43L21 is connected to the xCORE-200
through an I2S interface and is configured using an I2C interface.

XM0088546.1

USB Audio Design Guide 12/110

2.2.3 Audio Clocking

The board provides a low-jitter clock-source, an 24.576MHz oscillator, to serve as
reference clock to the CS2100-CP (Cirrus Logic) Fractional-N PLL (U22).

The CS2100 generates a low-jitter output signal that is distributed to the xCORE-
200 device and DAC. The CS2100 device is configured using the I2C interface.

2.2.4 Buttons, LEDs and Other IO

The board has 13 LEDs that are controlled by the xCORE-200 GPIO. The layout of
the LEDs is shown in Figure 3.

MIC6 MIC1

MIC2MIC5

D14

D2

D3

D4

D5

D6

D7D8

D9

D10

D11

D12

D13

A B D

xCORE-200
XUF216

C

MIC4 MIC3

Figure 3:

xCORE-200
Microphone
Array Board

LED
Arrangement

LED 0 to LED 11 (D2-D13) are positioned around the edge of the board, one
each side of every microphone. LED 12 (D14) is positioned next to the middle
microphone.

XM0088546.1

USB Audio Design Guide 13/110

A green LED (PGOOD) by the USB connector indicates a 3V3 power good signal.

Four general purpose push-button switches are provided. When pressed, each
button creates a connection from the I/O to GND.

A standard XMOS xSYS interface (J2) is provided to allow host debug of the board
via JTAG.

The board also includes Ethernet conextivity, however, this is outside the scope of
this documentation.

XM0088546.1

USB Audio Design Guide 14/110

2.3 USB Multi-function Audio (MFA) Kit

It is not recommended to use this hardware as a basic for a new design

The XMOS Multi-function Audio kit12 (XK-USB-AUDIO-U8-2C-AB) is a hardware refer-
ence design available from XMOS based on a single tile XMOS U-series device.

· A main board which includes the XMOS U-series device and all audio
hardware

· A “USB Slice” board which contains USB connectivity

The separate USB slice board allows flexibility in the connection method to the USB
audio source/sink as well as other functionality such as 3rd party authentication
ICs and any required USB switching. This also means the XMOS device can be used
as a USB device or host using the same main board.

This document addresses the combination of the main board with the USB AB slice
(part numbers XK-USB-AUDIO-U8-2C and XA-SK-USB-AB respectively). This provides
a standard USB Audio device hardware configuration using the B socket on the USB
AB slice.

XMOS
XS1-U8A-64

24 bit 192kHz
+ DSD

Stereo Audio
DAC

CS4392

24 bit 192kHz
Stereo Audio

ADC

CS4392

I2S

I2S

Audio Master
Clock PLL

24.576 MHz
Or

22.5792 MHz

& 24MHz

MCLK

FSEL

Stereo
Differential to
Single Ended
Active LPF

Stereo
Single Ended
Active LPF

3.5mm
Stereo

TRS Jack

3.5mm
Stereo

TRS Jack

Gate SPDIF
RCA

Socket

Buffer
Isolator &

Buffer

MIDI

MIDI

5 Pin DIN
MIDI TX

5 Pin DIN
MIDI RX

MUX

4Mbit
Flash

CS

SPI

2 Position
Switch

&
2 x Push
Buttons

2 x User
LEDs

USB
Slice

Connector
PCIE 36
Socket

USB
High Speed

I2C

GPIO

24MHz

XSYS
Debug

Connector

JTAGXSCOPE
Link

12V DC
3A

Cent +ve
Connector

12V to 5V
DCDC

12
V

Over Voltage
Protection

5V

Over Current
Protection

Switch

V
B

U
S

O
U

T

EN

Preferential
5V OR

VBUS

IN

VBUS IN

Preferential
5V OR

5V
Charge Pump

5V Analogue Audio

Dual
3V3 LDO 3V3 IO

3V3 ADC
3V3 High

Side Switch

3V3 Analogue Audio

EN

S
ys

te
m

 5
V

Figure 4:

Multi-
function

Audio Kit
Block

Diagram

The core board includes a U-Series device with integrated USB PHY, a stereo DAC
(with support for Direct Stream Digital) and a stereo ADC. Both ADC and DAC

12http://www.xmos.com/products/reference-designs/mfa

XM0088546.1

http://www.xmos.com/products/reference-designs/mfa

USB Audio Design Guide 15/110

support sample frequencies up to 192kHz. As well as analogue channels the main
board also has MIDI input and output connectors and a COAX connector for S/PDIF
output.

In addition the main board also includes two LEDs, two buttons and one two-
position switch for use by the user application.

2.4 U16 Multi-Channel USB Audio Kit

It is not recommended to use this hardware as a basic for a new design

The XMOS U16 Multi-Channel USB Audio kit13 is a hardware development platform
available from XMOS based on a dual tile XMOS U-series device.

· A sliceKIT core board which includes the XMOS U-series device (XP-SKC-U16)
· A “USB Slice” board which contains USB connectivity (XA-SK-USB-AB)
· A double-slot slice card including audio hardware and connectors (XA-SK-

AUDIO8)

The separate USB slice board allows flexibility in the connection method to the USB
audio source/sink as well as other functionality such as 3rd party authentication
ICs and any required USB switching. This also means the XMOS device can be used
as a USB device or host using the same main board.

This document addresses the combination of the main board with the USB AB
slice (part numbers XP-SKC-U16 and XA-SK-USB-AB respectively). This provides a
standard USB Audio device hardware configuration using the B socket on the USB
AB slice.

The core board includes a U-Series device with integrated USB PHY and required
supporting componentry.

Please note, for correct operation the following core-board jumper settings are
required:

· J14 (DIA/ALT) should be set to ALT

· J15 (D12 XOVER) should be set to ON

The double-slot audio slice (XA-SK-AUDIO8) includes separate multi-channel DAC
and ADC providing 8 channels of both analogue output and input. Both DAC and
ADC devices support sample frequencies up to 192kHz with the DAC supporting
Direct Stream Digital (DSD).

As well as analogue channels the audio-slice also has MIDI input and output
connectors and both COAX and optical connectors for digital output.

Additionally the slice also includes an LED matrix and three push-buttons for use
by the user application.

13http://www.xmos.com/usbaudio16mc

XM0088546.1

http://www.xmos.com/usbaudio16mc

USB Audio Design Guide 16/110

2.5 USB Audio 2.0 DJ Kit

This hardware should not be used for the basis of a new design.

The XMOS USB Audio 2.0 DJ kit (XR-USB-AUDIO-2.0-4C)14 is a hardware reference
design available from XMOS based on the XMOS U8 device.

The DJ naming simply comes from the fact the board has 4 input and 4 output
audio channels - a common configuration for a DJ controller.

The kit is made up of two boards a “core” board and an “audio slice” board. Part
numbers XP-SKC-SU1 and XA-SK-AUDIO respectively.

The core board includes a U-Series device with integrated USB PHY. The audio slice
board is equipped with two stereo audio CODECs giving 4 channels of input and 4
channels of output at sample frequencies up to 192kHz.

In addition to analogue channels the audio slice board also has MIDI input and
output connectors and a COAX connector for S/PDIF output.

2.6 USB Audio 2.0 Reference Design Board

This hardware should not be used for the basis of a new design.

The USB Audio 2.0 Reference Design15 is a stereo hardware reference design
available from XMOS based on an XMOS L8 device (previously named L1). The
diagram in Figure 5 shows the block layout of the USB Audio 2.0 Reference Design
board. The main purpose of the XS1 L-Series device is to provide a USB Audio
interface to the USB PHY and route the audio to the audio CODEC and S/PDIF output.
Note, although the software supports MIDI, there are no MIDI connectors on the
board.

For full hardware details please refer to the USB Audio 2.0 Ref Design XS1-L1
Hardware Manual16.

The reference board has an associated firmware application that uses the USB
Audio 2.0 software reference platform. Details of this application can be found in
section §6.1.

14https://www.xmos.com/support/boards?product=15404
15https://www.xmos.com/support/boards?product=14772
16https://www.xmos.com/published/usb-audio-20-ref-design-xs1-l1-hardware-manual

XM0088546.1

https://www.xmos.com/support/boards?product=15404
https://www.xmos.com/support/boards?product=14772
https://www.xmos.com/published/usb-audio-20-ref-design-xs1-l1-hardware-manual

USB Audio Design Guide 17/110

13MHz
Oscillator

USB
Series B

Receptacle

1.8V LDO

3.3V LDO

1.0V DC-DC

4.3V LDO

User
LEDs

Push-button
Switches Audio Master

Clock Oscillator

Produces
24.576MHz

or
11.2896MHz

USB
Transceiver
USB3318

Passive
LPF

‘-244
Stereo

TRS Jack

‘-244
Stereo

TRS Jack

Passive
LPF

24 bit 192kHz
Stereo Audio

CODEC

CS4270

USB
High Speed
480Mb/s

+5V VBus

8’.’

Tile
Supply

CODEC
Analogue

Supply

ULPI I2S

Analog Out
1Vrms at
Full Scale

Analog In
2Vrms at
Full Scale

JTAG SPI
MCLK

S/PDIFXSYS
Debug

1MBit
FLASH

Resync
Optical

Digital Audio
Transmitter

Figure 5:

USB Audio
2.0 Reference
Design Block

Diagram

2.7 USB Audio 2.0 Multichannel Reference Design Board

This hardware should not be used for the basis of a new design.

The USB Audio 2.0 Multichannel Reference Design (XR-USB-AUDIO-2.0-MC)17 is a
hardware reference design available from XMOS based on the XMOS L16 device
(previously named L2)

Figure 6 shows the block layout of the USB Audio 2.0 Multichannel Reference
Design board.

The board supports six analogue inputs and eight analogue outputs (via a CS4244
CODEC), digital input and output (via coax and optical connectors) and MIDI input
and output. For full details please refer to USB Audio 2.0 Reference Design, XS1-L2
Edition Hardware Manual18.

The reference board has an associated firmware application that uses the USB
Audio 2.0 software reference platform. Details of this application can be found in
section §6.3.

17https://www.xmos.com/support/boards?product=14771
18https://www.xmos.com/download/public/USB-Audio-2.0-MC-Hardware-Manual%281.6%29.pdf

XM0088546.1

https://www.xmos.com/support/boards?product=14771
https://www.xmos.com/download/public/USB-Audio-2.0-MC-Hardware-Manual%281.6%29.pdf

USB Audio Design Guide 18/110

012..

012..

012..

012..

012..

012..

012..

<=

012..

Figure 6:

USB Audio
2.0

Multichannel
Reference

Design Block
Diagram

XM0088546.1

3 Software Architecture

IN THIS CHAPTER

· The USB Audio System Architecture

· XMOS USB Device (XUD) Library

· Endpoint 0: Management and Control

· Audio Endpoints (Endpoint Buffer and Decoupler)

· Audio Driver

· Digital Mixer

· S/PDIF Transmit

· S/PDIF Receive

· ADAT Receive

· External Clock Recovery (ClockGen)

· MIDI

· PDM Microphones

· Overview of PDM implemention

· Resource Usage

The following sections describe the software architecture of the XMOS USB Audio
framework.

XMOS USB Audio solutions are provided as a framework with reference design
applications customising and extending this framework to provide the required
functionality. These applications execute on a reference hardware platform.

XM0088546.1

USB Audio Design Guide 20/110

3.1 The USB Audio System Architecture

The XMOS USB Audio platform consists of a series of communicating components.
Every system is required to have the shared components listed in Figure 7.

Component Description

XMOS USB Device Driver (XUD) Handles the low level USB I/O.

Endpoint 0 Provides the logic for Endpoint 0 which handles
enumeration and control of the device including DFU
related requests.

Endpoint buffer Buffers endpoint data packets to and from the host.

Decoupler Manages delivery of audio packets between the
endpoint buffer component and the audio components.
It can also handle volume control processing.

Audio Driver Handles audio I/O over I2S and manages audio data
to/from other digital audio I/O components.

Figure 7:

Shared
Components

In addition Figure 8 shows components that can be added to a design:

Component Description

Mixer Allows digital mixing of input and output channels. It can also
handle volume control instead of the decoupler.

S/PDIF Transmitter Outputs samples of an S/PDIF digital audio interface.

S/PDIF Receiver Inputs samples of an S/PDIF digital audio interface (requires the
clockgen component).

ADAT Receiver Inputs samples of an ADAT digital audio interface (requires the
clockgen component).

Clockgen Drives an external frequency generator (PLL) and manages
changes between internal clocks and external clocks arising from
digital input.

MIDI Outputs and inputs MIDI over a serial UART interface.

PDM Microphones Receives PDM data from microphones and performs PDM to PCM
conversion

Figure 8:

Optional
Components

Figure 9 shows how the components interact with each other. The green circles
represent cores with arrows indicating inter-core communications.

This section will now examine these components in further detail.

3.2 XMOS USB Device (XUD) Library

All low level communication with the USB host is handled by the XMOS USB Device
(XUD) library.

The XUD_Manager() function runs in its own core and communicates with endpoint
cores though a mixture of shared memory and channel communications.

XM0088546.1

USB Audio Design Guide 21/110

Figure 9:

USB Audio
Core Diagram

For more details and full XUD API documentation please refer to XMOS USB Device
(XUD) Library19

Figure 9 shows the XUD library communicating with two other cores:

· Endpoint 0: This core controls the enumeration/configuration tasks of the USB
device.

· Endpoint Buffer: This core sends/receives data packets from the XUD library.
The core receives audio data from the decoupler core, MIDI data from the MIDI
core etc.

19http://www.xmos.com/published/xuddg

XM0088546.1

http://www.xmos.com/published/xuddg

USB Audio Design Guide 22/110

3.3 Endpoint 0: Management and Control

All USB devices must support a mandatory control endpoint, Endpoint 0. This
controls the management tasks of the USB device.

These tasks can be generally split into enumeration, audio configuration and
firmware upgrade requests.

3.3.1 Enumeration

When the device is first attached to a host, enumeration occurs. This process
involves the host interrogating the device as to its functionality. The device does
this by presenting several interfaces to the host via a set of descriptors.

During the enumeration process the host will issue various commands to the device
including assigning the device a unique address on the bus.

The endpoint 0 code runs in its own core and follows a similar format to that of
the USB Device examples in sc_usb_device (i.e. Example HID Mouse Demo). That
is, a call is made to USB_GetSetupPacket() to receive a command from the host.
This populates a USB_SetupPacket_t structure, which is then parsed.

There are many mandatory requests that a USB Device must support as required by
the USB Specification. Since these are required for all devices in order to function
a USB_StandardRequests() function is provided (see module_usb_device) which
implements all of these requests. This includes the following items:

· Requests for standard descriptors (Device descriptor, configuration descriptor
etc) and string descriptors

· USB GET/SET INTERFACE requests

· USB GET/SET_CONFIGURATION requests

· USB SET_ADDRESS requests

For more information and full documentation, including full worked examples of
simple devices, please refer the XMOS USB Device Design Guide20

The USB_StandardRequests() function takes the devices various descriptors as
parameters, these are passed from data structures found in the descriptors.h
file. These data structures are fully customised based on the how the design is
configured using various defines (see §7.1).

The USB_StandardRequests() functions returns a XUD_Result_t. XUD_RESULT_OKAY
indicates that the request was fully handled without error and no further action is
required - The device should move to receiving the next request from the host (via
USB_GetSetupPacket()).

The function returns XUD_RES_ERR if the request was not recognised by the
USB_StandardRequests() function and a STALL has been issued.

20https://www.xmos.com/zh/node/17007?page=9

XM0088546.1

https://www.xmos.com/zh/node/17007?page=9

USB Audio Design Guide 23/110

The function may also return XUD_RES_RST if a bus-reset has been issued onto the
bus by the host and communicated from XUD to Endpoint 0.

Since the USB_StandardRequests() function STALLs an unknown request, the end-
point 0 code must parse the USB_SetupPacket_t structure to handle device specific
requests and then calling USB_StandardRequests() as required. This is described
next.

3.3.2 Over-riding Standard Requests

The USB Audio design “over-rides” some of the requests handled by
USB_StandardRequests(), for example it uses the SET_INTERFACE request to
indicate it if the host is streaming audio to the device. In this case the setup
packet is parsed, the relevant action taken, the USB_StandardRequests() is called
to handle the response to the host etc.

3.3.3 Class Requests

Before making the call to USB_StandardRequests() the setup packet is parsed for
Class requests. These are handled in functions such as AudioClasRequests_2(),
AudioClassRequests_2, DFUDeviceRequests() etc depending on the type of re-
quest.

Any device specific requests are handled - in this case Audio Class, MIDI class, DFU
requests etc.

Some of the common Audio Class requests and their associated behaviour will now
be examined.

3.3.3.1 Audio Requests

When the host issues an audio request (e.g. sample rate or volume change),
it sends a command to Endpoint 0. Like all requests this is returned from
USB_GetSetupPacket(). After some parsing (namely as Class Request to an Au-
dio Interface) the request is handled by either the AudioClassRequests_1() or
AudioClassRequests_2() function (based on whether the device is running in Au-
dio Class 1.0 or 2.0 mode).

Note, Audio Class 1.0 Sample rate changes are send to the relevant endpoint,
rather than the interface - this is handled as a special case in he endpoint 0 request
parsing where AudioEndpointRequests_1() is called.

The AudioClassRequests_X() functions parses the request further in order to
ascertain the correct audio operation to execute.

XM0088546.1

USB Audio Design Guide 24/110

3.3.3.2 Audio Request: Set Sample Rate

The AudioClassRequests_2() function parses the passed USB_SetupPacket_t struc-
ture for a CUR request of type SAM_FREQ_CNTROL to a Clock Unit in the devices
topology (as described in the devices descriptors).

The new sample frequency is extracted and passed via channel to the rest of
the design - through the buffering code and eventually to the Audio IO/I2S core.
The AudioClassRequests_2() function waits for a handshake to propagate back
though the system before signalling to the host that the request has completed
successfully. Note, during this time the USB library is NAKing the host essentially
holding off further traffic/requests until the sample-rate change is fully complete.

3.3.3.3 Audio Request: Volume Control

When the host requests a volume change, it sends an audio interface request to
Endpoint 0. An array is maintained in the Endpoint 0 core that is updated with
such a request.

When changing the volume, Endpoint 0 applies the master volume and channel
volume, producing a single volume value for each channel. These are stored in the
array.

The volume will either be handled by the decoupler core or the mixer component
(if the mixer component is used). Handling the volume in the mixer gives the
decoupler more performance to handle more channels.

If the effect of the volume control array on the audio input and output is imple-
mented by the decoupler, the decoupler core reads the volume values from this
array. Note that this array is shared between Endpoint 0 and the decoupler core.
This is done in a safe manner, since only Endpoint 0 can write to the array, word
update is atomic between cores and the decoupler core only reads from the array
(ordering between writes and reads is unimportant in this case). Inline assembly is
used by the decoupler core to access the array, avoiding the parallel usage checks
of XC.

If volume control is implemented in the mixer, Endpoint 0 sends a mixer command
to the mixer to change the volume. Mixer commands are described in §3.6.

3.4 Audio Endpoints (Endpoint Buffer and Decoupler)

3.4.1 Endpoint Buffer

All endpoints other that Endpoint 0 are handled in one core. This core is imple-
mented in the file usb_buffer.xc. This core is communicates directly with the XUD
library.

The USB buffer core is also responsible for feedback calculation based on USB Start
Of Frame (SOF) notification and reads from the port counter of a port connected to
the master clock.

XM0088546.1

USB Audio Design Guide 25/110

3.4.2 Decoupler

The decoupler supplies the USB buffering core with buffers to transmit/receive
audio data to/from the host. It marshals these buffers into FIFOs. The data from
the FIFOs are then sent over XC channels to other parts of the system as they need
it. This core also determines the size of each packet of audio sent to the host (thus
matching the audio rate to the USB packet rate). The decoupler is implemented in
the file decouple.xc.

3.4.3 Audio Buffering Scheme

This scheme is executed by co-operation between the buffering core, the decouple
core and the XUD library.

For data going from the device to the host the following scheme is used:

1. The decouple core receives samples from the audio core and puts them into a
FIFO. This FIFO is split into packets when data is entered into it. Packets are
stored in a format consisting of their length in bytes followed by the data.

2. When the buffer cores needs a buffer to send to the XUD core (after sending the
previous buffer), the decouple core is signalled (via a shared memory flag).

3. Upon this signal from the buffering core, the decouple core passes the next
packet from the FIFO to the buffer core. It also signals to the XUD library that
the buffer core is able to send a packet.

4. When the buffer core has sent this buffer, it signals to the decouple that the
buffer has been sent and the decouple core moves the read pointer of the FIFO.

For data going from the host to the device the following scheme is used:

1. The decouple core passes a pointer to the buffering core pointing into a FIFO of
data and signals to the XUD library that the buffering core is ready to receive.

2. The buffering core then reads a USB packet into the FIFO and signals to the
decoupler that the packet has been read.

3. Upon receiving this signal the decoupler core updates the write pointer of the
FIFO and provides a new pointer to the buffering core to fill.

4. Upon request from the audio core, the decoupler core sends samples to the
audio core by reading samples out of the FIFO.

3.4.4 Decoupler/Audio Core interaction

To meet timing requirements of the audio system, the decoupler core must respond
to requests from the audio system to send/receive samples immediately. An
interrupt handler is set up in the decoupler core to do this. The interrupt handler
is implemented in the function handle_audio_request.

XM0088546.1

USB Audio Design Guide 26/110

The audio system sends a word over a channel to the decouple core to request
sample transfer (using the build in outuint function). The receipt of this word in
the channel causes the handle_audio_request interrupt to fire.

The first operation the interrupt handler does is to send back a word acknowledging
the request (if there was a change of sample frequency a control token would
instead be sent—the audio system uses a testct() to inspect for this case).

Sample transfer may now take place. First the audio subsystem transfers samples
destined for the host, then the decouple core sends samples from the host to
device. These transfers always take place in channel count sized chunks (i.e.
NUM_USB_CHAN_OUT and NUM_USB_CHAN_IN). That is, if the device has 10 output
channels and 8 input channels, 10 samples are sent from the decouple core and 8
received every interrupt.

The complete communication scheme is shown in the table below (for non sample
frequency change case):

Decouple Audio System Note

outuint() Audio system requests sample exchange

inuint() Interrupt fires and inuint performed

outuint() Decouple sends ack

testct() Checks for CT indicating SF change

inuint() Word indication ACK input (No SF change)

inuint() outuint() Sample transfer (Device to Host)

inuint() outuint()

inuint() outuint()

...

outuint() inuint() Sample transfer (Host to Device)

outuint() inuint()

outuint() inuint()

outuint() inuint()

...

Figure 10:

Decouple/Audio
System

Channel Com-
munication

The request and acknowledgement sent to/from Decouple to the Audio System is
an “output underflow” sample value. If in PCM mode it will be 0, in DSD mode it will
be DSD silence. This allows the buffering system to output a suitable underflow
value without knowing the format of the stream (this is especially advantageous in
the DSD over PCM (DoP) case)

3.4.4.1 Asynchronous Feedback

The device uses a feedback endpoint to report the rate at which audio is output/in-
put to/from external audio interfaces/devices. This feedback is in accordance with
the USB 2.0 Specification.

XM0088546.1

USB Audio Design Guide 27/110

This asynchronous clocking scheme means that the device is the clocking master
than therefore means a high-quality local master clock source can be used.

After each received USB SOF token, the buffering core takes a time-stamp from
a port clocked off the master clock. By subtracting the time-stamp taken at the
previous SOF, the number of master clock ticks since the last SOF is calculated.
From this the number of samples (as a fixed point number) between SOFs can be
calculated. This count is aggregated over 128 SOFs and used as a basis for the
feedback value.

The sending of feedback to the host is also handled in the USB buffering core via
an explicit feedback IN endpoint. If both input and output is enabled then the
feedback is implicit based on the audio stream sent to the host.

3.4.4.2 USB Rate Control

The Audio core must consume data from USB and provide data to USB at the correct
rate for the selected sample frequency. The USB 2.0 Specification states that the
maximum variation on USB packets can be +/- 1 sample per USB frame. USB frames
are sent at 8kHz, so on average for 48kHz each packet contains six samples per
channel. The device uses Asynchronous mode, so the audio clock may drift and run
faster or slower than the host. Hence, if the audio clock is slightly fast, the device
may occasionally input/output seven samples rather than six. Alternatively, it may
be slightly slow and input/output five samples rather than six. Figure 11 shows
the allowed number of samples per packet for each example audio frequency.

See USB Device Class Definition for Audio Data Formats v2.0 section 2.3.1.1 for
full details.

Frequency (kHz) Min Packet Max Packet

44.1 5 6

48 5 7

88.2 10 11

96 11 13

176.4 20 21

192 23 25

Figure 11:

Allowed
samples per

packet

To implement this control, the decoupler core uses the feedback value calculated
in the buffering core. This value is used to work out the size of the next packet it
will insert into the audio FIFO.

3.5 Audio Driver

The audio driver receives and transmits samples from/to the decoupler or mixer
core over an XC channel. It then drives several in and out I2S/TDM channels. If
the firmware is configured with the CODEC as slave, it will also drive the word and
bit clocks in this core as well. The word clocks, bit clocks and data are all derived

XM0088546.1

USB Audio Design Guide 28/110

from the incoming master clock (typically the output of the external oscillator or
PLL). The audio driver is implemented in the file audio.xc.

The audio driver captures and plays audio data over I2S. It also forwards on relevant
audio data to the S/PDIF transmit core.

The audio core must be connected to a CODEC that supports I2S (other modes
such as “left justified” can be supported with firmware changes). In slave mode, the
XMOS device acts as the master generating the Bit Clock (BCLK) and Left-Right Clock
(LRCLK, also called Word Clock) signals. Any CODEC or DAC/ADC combination that
supports I2S and can be used.

Figure 12 shows the signals used to communicate audio between the XMOS device
and the CODEC.

Signal Description

LRCLK The word clock, transition at the start of a sample

BCLK The bit clock, clocks data in and out

SDIN Sample data in (from CODEC/ADC to the XMOS device)

SDOUT Sample data out (from the XMOS device to CODEC/DAC)

MCLK The master clock running the CODEC/DAC/ADC

Figure 12:

I2S Signals

The bit clock controls the rate at which data is transmitted to and from the CODEC.
In the case where the XMOS device is the master, it divides the MCLK to generate
the required signals for both BCLK and LRCLK, with BCLK then being used to clock
data in (SDIN) and data out (SDOUT) of the CODEC.

Figure 13 shows some example clock frequencies and divides for different sample
rates (note that this reflects the single tile L-Series reference board configuration):

Sample Rate (kHz) MCLK (MHz) BCLK (MHz) Divide

44.1 11.2896 2.819 4

88.2 11.2896 5.638 2

176.4 11.2896 11.2896 1

48 24.576 3.072 8

96 24.576 6.144 4

192 24.576 12.288 2

Figure 13:

Clock Divides
used in single

tile L-Series
Ref Design

The master clock must be supplied by an external source e.g. clock generator,
fixed oscillators, PLL etc to generate the two frequencies to support 44.1kHz and
48kHz audio frequencies (e.g. 11.2896/22.5792MHz and 12.288/24.576MHz
respectively). This master clock input is then provided to the CODEC and the XMOS
device.

XM0088546.1

USB Audio Design Guide 29/110

3.5.1 Port Configuration (xCORE Master)

The default software configuration is CODEC Slave (xCORE master). That is, the
XMOS device provides the BCLK and LRCLK signals to the CODEC.

XS1 ports and XMOS clocks provide many valuable features for implementing I2S.
This section describes how these are configured and used to drive the I2S interface.

L8A-64-TQ128
p_mclk

p_sdin

clk_audio_mclk

clk_audio_bclk

Audio master clock

CODEC

 p_bclk

p_lrclk

p_sdout

Figure 14:

Ports and
Clocks

(CODEC slave)

The code to configure the ports and clocks is in the ConfigAudioPorts() function.
Developers should not need to modify this.

The XMOS device inputs MCLK and divides it down to generate BCLK and LRCLK.

To achieve this MCLK is input into the device using the 1-bit port p_mclk. This
is attached to the clock block clk_audio_mclk, which is in turn used to clock the
BCLK port, p_bclk. BCLK is used to clock the LRCLK (p_lrclk) and data signals
SDIN (p_sdin) and SDOUT (p_sdout). Again, a clock block is used (clk_audio_bclk)
which has p_bclk as its input and is used to clock the ports p_lrclk, p_sdin and
p_sdout. The preceding diagram shows the connectivity of ports and clock blocks.

p_sdin and p_sdout are configured as buffered ports with a transfer width of 32,
so all 32 bits are input in one input statement. This allows the software to input,
process and output 32-bit words, whilst the ports serialize and deserialize to the
single I/O pin connected to each port.

xCORE-200 series devices have the ability to divide an extenal clock in a clock-block.
However, XS1 based devices do not have this functionality. In order achieve the
reqired master-clock to bit-clock/LR-clock divicd on XS1 devices, buffered ports
with a transfer width of 32 are also used for p_bclk and p_lrclk. The bit clock
is generated by performing outputs of a particular pattern to p_bclk to toggle
the output at the desired rate. The pattern depends on the divide between the

XM0088546.1

USB Audio Design Guide 30/110

master-clock and bit-clock. The following table shows the required pattern for
different values of this divide:

Divide Output pattern Outputs per sample

2 0xAAAAAAAA 2

4 0xCCCCCCCC 4

8 0xF0F0F0F0 8

Figure 15:

Output
patterns

In any case, the bit clock outputs 32 clock cycles per sample. In the special
case where the divide is 1 (i.e. the bit clock frequency equals the master clock
frequency), the p_bclk port is set to a special mode where it simply outputs its
clock input (i.e. p_mclk). See configure_port_clock_output() in xs1.h for details.

p_lrclk is clocked by p_bclk. In I2S mode the port outputs the pattern 0x7fffffff
followed by 0x80000000 repeatedly. This gives a signal that has a transition one
bit-clock before the data (as required by the I2S standard) and alternates between
high and low for the left and right channels of audio.

3.5.2 Changing Audio Sample Frequency

When the host changes sample frequency, a new frequency is sent to the audio
driver core by Endpoint 0 (via the buffering cores and mixer).

First, a change of sample frequency is reported by sending the new frequency
over an XC channel. The audio core detects this by checking for the presence of a
control token on the channel channel

Upon receiving the change of sample frequency request, the audio core stops the
I2S/TDM interface and calls the CODEC/port configuration functions.

Once this is complete, the I2S/TDM interface is restarted at the new frequency.

3.6 Digital Mixer

The mixer core(s) take outgoing audio from the decoupler core and incoming
audio from the audio driver core. It then applies the volume to each channel
and passes incoming audio on to the decoupler and outgoing audio to the audio
driver. The volume update is achieved using the built-in 32bit to 64bit signed
multiply-accumulate function (macs). The mixer is implemented in the file mixer.xc.

The mixer takes two cores and can perform eight mixes with up to 18 inputs at
sample rates up to 96kHz and two mixes with up to 18 inputs at higher sample
rates. The component automatically moves down to two mixes when switching to
a higher rate.

The mixer can take inputs from either:

· The USB outputs from the host—these samples come from the decoupler core.

XM0088546.1

USB Audio Design Guide 31/110

· The inputs from the audio interface on the device—these samples come from
the audio driver.

Since the sum of these inputs may be more then the 18 possible mix inputs to
each mixer, there is a mapping from all the possible inputs to the mixer inputs.

After the mix occurs, the final outputs are created. There are two output destina-
tions:

· The USB inputs to the host—these samples are sent to the decoupler core.

· The outputs to the audio interface on the device—these samples are sent to the
audio driver.

For each possible output, a mapping exists to tell the mixer what its source is.
The possible sources are the USB outputs from the host, the inputs for the audio
interface or the outputs from the mixer units.

As mentioned in §3.3.3.3, the mixer can also handle volume setting. If the mixer
is configured to handle volume but the number of mixes is set to zero (so the
component is solely doing volume setting) then the component will use only one
core.

3.6.1 Control

The mixers can receive the following control commands from the Endpoint 0 core
via a channel:

Command Description

SET_SAMPLES_TO_HOST_MAP Sets the source of one of the audio streams going to the
host.

SET_SAMPLES_TO_DEVICE_MAP Sets the source of one of the audio streams going to the
audio driver.

SET_MIX_MULT Sets the multiplier for one of the inputs to a mixer.

SET_MIX_MAP Sets the source of one of the inputs to a mixer.

SET_MIX_IN_VOL If volume adjustment is being done in the mixer, this
command sets the volume multiplier of one of the USB
audio inputs.

SET_MIX_OUT_VOL If volume adjustment is being done in the mixer, this
command sets the volume multiplier of one of the USB
audio outputs.

Figure 16:

Mixer
Component
Commands

3.6.2 Host Control

The mixer can be controlled from a host PC by sending requests to Endpoint 0.
XMOS provides a simple command line based sample application demonstrating
how the mixer can be controlled.

For details, consult the README file in the host_usb_mixer_control directory.

XM0088546.1

USB Audio Design Guide 32/110

The main requirements of this control are to

· Set the mapping of input channels into the mixer

· Set the coefficients for each mixer output of each input

· Set the mapping for physical outputs which can either come directly from the
inputs or via the mixer.

There is enough flexibility within this configuration that there will often be multiple
ways of creating the required solution.

Whilst using the XMOS Host control example application, consider setting the mixer
to perform a loop-back from analogue inputs 1 and 2 to analogue outputs 1 and 2.

First consider the inputs to the mixer:

./ xmos_mixer --display -aud -channel -map 0

displays which channels are mapped to which mixer inputs:

./ xmos_mixer --display -aud -channel -map -sources 0

displays which channels could possibly be mapped to mixer inputs. Notice that
analogue inputs 1 and 2 are on mixer inputs 10 and 11.

Now examine the audio output mapping:

./ xmos_mixer --display -aud -channel -map 0

displays which channels are mapped to which outputs. By default all of these
bypass the mixer. We can also see what all the possible mappings are:

./ xmos_mixer --display -aud -channel -map -sources 0

So now map the first two mixer outputs to physical outputs 1 and 2:

./ xmos_mixer --set -aud -channel -map 0 26

./ xmos_mixer --set -aud -channel -map 1 27

You can confirm the effect of this by re-checking the map:

./ xmos_mixer --display -aud -channel -map 0

This now makes analogue outputs 1 and 2 come from the mixer, rather than
directly from USB. However the mixer is still mapped to pass the USB channels
through to the outputs, so there will still be no functional change yet.

The mixer nodes need to be individually set. They can be displayed with:

XM0088546.1

USB Audio Design Guide 33/110

./ xmos_mixer --display -mixer -nodes 0

To get the audio from the analogue inputs to outputs 1 and 2, nodes 80 and 89
need to be set:

./ xmos_mixer --set -value 0 80 0

./ xmos_mixer --set -value 0 89 0

At the same time, the original mixer outputs can be muted:

./ xmos_mixer --set -value 0 0 -inf

./ xmos_mixer --set -value 0 9 -inf

Now audio inputs on analogue 1/2 should be heard on outputs 1/2.

As mentioned above, the flexibility of the mixer is such that there will be multiple
ways to create a particular mix. Another option to create the same routing would be
to change the mixer sources such that mixer 1/2 outputs come from the analogue
inputs.

To demonstrate this, firstly undo the changes above:

./ xmos_mixer --set -value 0 80 -inf

./ xmos_mixer --set -value 0 89 -inf

./ xmos_mixer --set -value 0 0 0

./ xmos_mixer --set -value 0 9 0

The mixer should now have the default values. The sources for mixer 1/2 can now
be changed:

./ xmos_mixer --set -mixer -source 0 0 10

./ xmos_mixer --set -mixer -source 0 1 11

If you rerun:

./ xmos_mixer --display -mixer -nodes 0

the first column now has AUD - Analogue 1 and 2 rather than DAW (Digital Audio
Workstation i.e. the host) - Analogue 1 and 2 confirming the new mapping. Again,
by playing audio into analogue inputs 1/2 this can be heard looped through to
analogue outputs 1/2.

3.7 S/PDIF Transmit

XMOS devices can support S/PDIF transmit up to 192kHz. The XMOS
S/SPDIF transmitter component runs in a single core and can be found in
sc_spdif/module_spdif_tx

XM0088546.1

USB Audio Design Guide 34/110

The S/PDIF transmitter core takes PCM audio samples via a channel and outputs
them in S/PDIF format to a port. A lookup table is used to encode the audio data
into the required format.

It receives samples from the Audio I/O core two at a time (for left and right). For
each sample, it performs a lookup on each byte, generating 16 bits of encoded
data which it outputs to a port.

S/PDIF sends data in frames, each containing 192 samples of the left and right
channels.

Audio samples are encapsulated into S/PDIF words (adding preamble, parity,
channel status and validity bits) and transmitted in biphase-mark encoding (BMC)
with respect to an external master clock.

Note that a minor change to the SpdifTransmitPortConfig function would enable
internal master clock generation (e.g. when clock source is already locked to
desired audio clock).

Sample frequencies 44.1, 48, 88.2, 96, 176.4, 192 kHz

Master clock ratios 128x, 256x, 512x

Module module_spdif_tx

Figure 17:

S/PDIF
Capabilities

3.7.1 Clocking

PORT

PORT D-type

MCLKXCORE Tile

S/PDIF
TX

S/PDIF
DATA

via clock block

Figure 18:

D-Type Jitter
Reduction

The S/PDIF signal is output at a rate dictated by the external master clock. The
master clock must be 1x 2x or 4x the BMC bit rate (that is 128x 256x or 512x audio
sample rate, respectively). For example, the minimum master clock frequency for
192kHz is therefore 24.576MHz.

This resamples the master clock to its clock domain (oscillator), which introduces
jitter of 2.5-5 ns on the S/PDIF signal. A typical jitter-reduction scheme is an
external D-type flip-flop clocked from the master clock (as shown in the preceding
diagram).

XM0088546.1

USB Audio Design Guide 35/110

3.7.2 Usage

The interface to the S/PDIF transmitter core is via a normal channel with streaming
built-ins (outuint, inuint). Data format should be 24-bit left-aligned in a 32-bit
word: 0x12345600

The following protocol is used on the channel:

outuint Sample frequency (Hz)

outuint Master clock frequency (Hz)

outuint Left sample

outuint Right sample

outuint Left sample

outuint Right sample

...

...
outct Terminate

Figure 19:

S/PDIF
Component

Protocol

3.7.3 Output stream structure

The stream is composed of words with the following structure shown in Figure 20.
The channel status bits are 0x0nc07A4, where c=1 for left channel, c=2 for right
channel and n indicates sampling frequency as shown in Figure 21.

Bits

0:3 Preamble Correct B M W order, starting at sample 0

4:27 Audio sample Top 24 bits of given word

28 Validity bit Always 0

29 Subcode data (user bits) Unused, set to 0

30 Channel status See below

31 Parity Correct parity across bits 4:30

Figure 20:

S/PDIF
Stream

Structure

Frequency (kHz) n

44.1 0

48 2

88.2 8

96 A

176.4 C

192 E

Figure 21:

Channel
Status Bits

3.8 S/PDIF Receive

XMOS devices can support S/PDIF receive up to 192kHz.

XM0088546.1

USB Audio Design Guide 36/110

The S/PDIF receiver module uses a clockblock and a buffered one-bit port. The
clock-block is divided of a 100 MHz reference clock. The one bit port is buffered
to 4-bits. The receiver code uses this clock to over sample the input data.

The receiver outputs audio samples over a streaming channel end where data can
be input using the built-in input operator.

The S/PDIF receive function never returns. The 32-bit value from the channel input
comprises:

Bits

0:3 A tag (see below)

4:28 PCM encoded sample value

29:31 User bits (parity, etc)

Figure 22:

S/PDIF RX
Word

Structure

The tag has one of three values:

Tag Meaning

FRAME_X Sample on channel 0 (Left for stereo)

FRAME_Y Sample on another channel (Right if for stereo)

FRAME_Z Sample on channel 0 (Left), and the first sample of a frame; can be used if
the user bits need to be reconstructed.

Figure 23:

S/PDIF RX
Tags

See S/PDIF specification for further details on format, user bits etc.

3.8.1 Usage and Integration

Since S/PDIF is a digital steam the devices master clock must be syncronised to it.
This is typically done with an external fractional-n multipier. See Clock Recovery
(§3.10)

The S/PDIF receive function communicates with the clockGen component with
passes audio data to the audio driver and handles locking to the S/PDIF clock
source if required (see External Clock Recovery).

Ideally the parity of each word/sample received should be checked. This is done
using the built in crc32 function (see xs1.h):

/* Returns 1 for bad parity , else 0 */
static inline int badParity(unsigned x)
{

unsigned X = (x>>4);
crc32(X, 0, 1);
return X & 1;

}

If bad parity is detected the word/sample is ignored, otherwise the tag is inspected
for channel (i.e. left or right) and the sample stored.

XM0088546.1

USB Audio Design Guide 37/110

The following code snippet illustrates how the output of the S/PDIF receive compo-
nent could be used:

while (1)
{

c_spdif_rx :> data;

if(badParity(data)
continue;

tag = data & 0xF;

/* Extract 24bit audio sample */
sample = (data << 4) & 0xFFFFFF00;

switch(tag)
{

case FRAME_X:
case FRAME_X:

// Store left
break;

case FRAME_Z:
// Store right
break;

}
}

3.9 ADAT Receive

The ADAT receive component receives up to eight channels of audio at a sample
rate of 44.1kHz or 48kHz. The API for calling the receiver functions is described in
§7.3.

The component outputs 32 bits words split into nine word frames. The frames are
laid out in the following manner:

· Control byte

· Channel 0 sample

· Channel 1 sample

· Channel 2 sample

· Channel 3 sample

· Channel 4 sample

· Channel 5 sample

· Channel 6 sample

XM0088546.1

USB Audio Design Guide 38/110

· Channel 7 sample

Example of code show how to read the output of the ADAT component is shown
below:

control = inuint(oChan);

for(int i = 0; i < 8; i++)
{

sample[i] = inuint(oChan);
}

Samples are 24-bit values contained in the lower 24 bits of the word.

The control word comprises four control bits in bits [11..8] and the value
0b00000001 in bits [7..0]. This control word enables synchronization at a higher
level, in that on the channel a single odd word is always read followed by eight
words of data.

3.9.1 Integration

Since the ADAT is a digital stream the devices master clock must synchronised to
it. This is typically achieved with an external fractional-n clock multiplier.

The ADAT receive function communicates with the clockGen component which
passes audio data onto the audio driver and handles locking to the ADAT clock
source if required.

3.10 External Clock Recovery (ClockGen)

An application can either provide fixed master clock sources via selectable oscil-
lators, clock generation IC, etc, to provide the audio master or use an external
PLL/Clock Multiplier to generate a master clock based on reference from the XMOS
device.

Using an external PLL/Clock Multiplier allows the design to lock to an external
clock source from a digital stream (e.g. S/PDIF or ADAT input).

The clock recovery core (clockGen) is responsible for generating the reference
frequency to the Fractional-N Clock Generator. This, in turn, generates the master
clock used over the whole design.

When running in Internal Clock mode this core simply generates this clock using a
local timer, based on the XMOS reference clock.

When running in an external clock mode (i.e. S/PDIF Clock” or “ADAT Clock” mode)
digital samples are received from the S/PDIF and/or ADAT receive core.

The external frequency is calculated through counting samples in a given period.
The reference clock to the Fractional-N Clock Multiplier is then generated based
on this external stream. If this stream becomes invalid, the timer event will fire to

XM0088546.1

USB Audio Design Guide 39/110

ensure that valid master clock generation continues regardless of cable unplugs
etc.

This core gets clock selection Get/Set commands from Endpoint 0 via the c_clk_ctl
channel. This core also records the validity of external clocks, which is also queried
through the same channel from Endpoint 0.

This core also can cause the decouple core to request an interrupt packet on change
of clock validity. This functionality is based on the Audio Class 2.0 status/interrupt
endpoint feature.

3.11 MIDI

The MIDI driver implements a 31250 baud UART input and output. On receiving
32-bit USB MIDI events from the buffer core, it parses these and translates them
to 8-bit MIDI messages which are sent over UART. Similarly, incoming 8-bit MIDI
messages are aggregated into 32-bit USB-MIDI events an passed on to the buffer
core. The MIDI core is implemented in the file usb_midi.xc.

3.12 PDM Microphones

3.13 Overview of PDM implemention

The design is capable of integrating PDM microphones. The PDM stream from the
microphones is converted to PCM and output to the host via USB.

Interfacing to the PDM microphones is done using the XMOS microphone array
library (lib_mic_array). lib_mic_array is designed to allow interfacing to PDM
microphones coupled with efficient decimation to user selectable output sample
rates.

The lib_mic_array library is only available for xCORE-200 series devices.

The following components of the library are used:

· PDM interface

· Four channel decimators

XM0088546.1

USB Audio Design Guide 40/110

Up to sixteen PDM microphones can be attached to each high channel
count PDM interface (mic_array_pdm_rx()). One to four processing tasks,
mic_array_decimate_to_pcm_4ch(), each process up to four channels. For 1-4
channels the library requires two logical cores:

Div 8
Decimator

4
ch

3.
07

2
M

H
z

Div 4
Decimator

1x
4

ch
38

4
kH

z

1x
4

ch
96

kH
z

Select
DC offset
FIR comp
Gain comp

1x
4

ch
8.

.4
8

kH
z

Overlapping
frames

WIndowing
Bit reverse

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

1x
4

ch
8.

.4
8

kH
z

1x
4

ch
8.

.4
8

kH
z

mic_array_decimate_to_pcm_4ch()mic_array_pdm_rx()

Figure 24:

One to four
channel

count PDM
interface

for 5-8 channels three logical cores are required, as shown below:

Div 8
Decimator

8
ch

3.
07

2
M

H
z

Div 4
Decimator

2x
4

ch
38

4
kH

z

2x
4

ch
96

kH
z

Select
DC offset
FIR comp
Gain comp

2x
4

ch
8.

.4
8

kH
z

Overlapping
frames

WIndowing
Bit reverse

Div 4
Decimator

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

Div N
Decimator
N=2,4,6,8

or 12

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

2x
4

ch
8.

.4
8

kH
z

2x
4

ch
8.

.4
8

kH
z

mic_array_pdm_rx()

mic_array_decimate_to_pcm_4ch()

Figure 25:

Five to eight
count PDM

interface

The left most task, mic_array_pdm_rx(), samples up to 8 microphones and filters
the data to provide up to eight 384 KHz data streams, split in two streams of four
channels. The processing thread decimates the signal to a user chosen sample
rate (one of 48, 24, 16, 12 or 8 KHz).

More channels can be supported by increasing the number of cores dedicated to
the PDM tasks. However, the current PDM mic integration into USB Audio limits
itself to 8.

After the decimation to the output sample-rate various other steps take place
e.g. DC offset elimination, gain correction and compensation etc. Please refer
to lib_mic_array documention for further implementation detail and complete
feature set.

3.13.1 PDM Microphone Hardware Characteristics

The PDM microphones need a clock input and provide the PDM signal on a data
output. All PDM microphones share the same clock signal (buffered on the PCB as
appropriate), and output onto eight data wires that are connected to a single 8-bit
port:

XM0088546.1

USB Audio Design Guide 41/110

CLOCK Clock line, the PDM clock the used by the microphones to drive the data out.

DQ_PDM The data from the PDM microphones on an 8 bit port.

Figure 26:

PDM
microphone

data and
signal wires

The only port that is passed into lib_mic_array is the 8-bit data port. The library
assumes that the input port is clocked using the PDM clock and requires no
knowlege of the PDM clock source.

The input clock for the microphones can be generated in a multitude of ways. For
example, a 3.072MHz clock can be generated on the board, or the xCORE can
divide down 12.288 MHz master clock. Or, if clock accuracy is not important, the
internal 100 MHz reference can be divided down to provide an approximate clock.

3.13.2 Integration of PDM Microphones into USB Audio

A PDM microphone wrapper is called from main() and takes one channel argument
connecting it to the rest of the system:

pcm_pdm_mic(c_pdm_pcm);

The implemetation of this function can be found in the file pcm_pdm_mics.xc.

The first job of this function is to configure the ports/clocking for the microphones,
this divides the external audio master clock input (on port p_mclk) and outputs the
divided clock to the microphones via the p_pdm_clk port:

configure_clock_src_divide(pdmclk , p_mclk , MCLK_TO_PDM_CLK_DIV);
configure_port_clock_output(p_pdm_clk , pdmclk);
configure_in_port(p_pdm_mics , pdmclk);
start_clock(pdmclk);

It then runs the various cores required for the PDM interface and PDM to PCM
conversion as discussed previously:

par
{

mic_array_pdm_rx(p_pdm_mics , c_4x_pdm_mic_0 , c_4x_pdm_mic_1);
mic_array_decimate_to_pcm_4ch(c_4x_pdm_mic_0 , c_ds_output [0]);
mic_array_decimate_to_pcm_4ch(c_4x_pdm_mic_1 , c_ds_output [1]);
pdm_process(c_ds_output , c_pcm_out);

}

The pdm_process() task includes the main integration code, it takes audio from the
lib_mic_array cores, buffers it, performs optional local processing and outputs it
to the audio driver (TDM/I2S core).

XM0088546.1

USB Audio Design Guide 42/110

This function simply makes a call to mic_array_get_next_time_domain_frame() in
order to get a frame of PCM audio from the microphones. It then waits for an
request for audio samples from the audio/I2S/TDM core via a channel and sends
the frame of audio back over this channel.

Note, it is assumed that the system shares a global master-clock, therefore no
additional buffering or rate-matching/conversion is required.

3.14 Resource Usage

The following table details the resource usage of each component of the reference
design software.

Component Cores Memory (KB) Ports

XUD library 1 9 (6 code) ULPI ports

Endpoint 0 1 17.5 (10.5 code) none

USB Buffering 1 22.5 (1 code) none

Audio driver 1 8.5 (6 code) See §3.5

S/PDIF Tx 1 3.5 (2 code) 1 x 1 bit port

S/PDIF Rx 1 3.7 (3.7 code) 1 x 1 bit port

ADAT Rx 1 3.2 (3.2 code) 1 x 1 bit port

Midi 1 6.5 (1.5 code) 2 x 1 bit ports

Mixer 2 8.7 (6.5 code)

ClockGen 1 2.5 (2.4 code)

Figure 27:

Resource
Usage

These resource estimates are based on the multichannel reference design with all
options of that design enabled. For fewer channels, the resource usage is likely to
decrease.

The XUD library requires an 80MIPS core to function correctly (i.e. on a 500MHz
part only six cores can run).

The ULPI ports are a fixed set of ports on the L-Series device. When using these
ports, other ports are unavailable when ULPI is active. See the XS1-L Hardware
Design Checklist21 for further details.

21http://www.xmos.com/published/xs1lcheck

XM0088546.1

http://www.xmos.com/published/xs1lcheck

4 Features & Options

IN THIS CHAPTER

· Device Firmware Upgrade (DFU)

· USB Audio Class Version Support

· Audio Controls via Human Interface Device (HID)

· Apple MFi compatibility

· Audio Stream Formats

· DSD over PCM (DoP)

This section looks at some of the available features of the USB Audio design.

4.1 Device Firmware Upgrade (DFU)

The DFU interface handles updates to the boot image of the device. The DFU code
is called from the Endpoint 0 core.

The interface links USB to the XMOS flash user library (see XM-000953-PC). In
Application mode the DFU can accept commands to reset the device into DFU mode.
There are two ways to do this:

· The host can send a DETACH request and then reset the device. If the device is
reset by the host within a specified timeout, it will start in DFU mode (this is
initially set to one second and is configurable from the host).

· The host can send a custom user request XMOS_DFU_RESETDEVICE to the DFU
interface that resets the device immediately into DFU mode.

Once the device is in DFU mode. The DFU interface can accept commands defined
by the DFU 1.1 class specification22. In addition the interface accepts the custom
command XMOS_DFU_REVERTFACTORY which reverts the active boot image to the
factory image. Note that the XMOS specific command request identifiers are
defined in dfu_types.h within module_dfu.

4.2 USB Audio Class Version Support

The XMOS USB Audio framework supports both USB Audio Class 1.0 and Audio
Class 2.0.

USB Audio Class 2.0 offers many improvements over USB Audio Class 1.0, most
notable is the complete support for high-speed operation. This means that Audio

22http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf*USB

XM0088546.1

http://www.xmos.com/doc/XM-000953-PC/latest#libflash-api
http://www.usb.org/developers/devclass_docs/DFU_1.1.pdf*USB

USB Audio Design Guide 44/110

Class devices are no longer limited to full-speed operation allowing greater channel
counts, sample frequencies and sample bit-depths. Additional improvement,
amoungst others, include:

· Added support for multiple clock domains, clock description and clock control

· Extensive support for interrupts to inform the host about dynamic changes that
occur to different entities such as Clocks etc

4.2.1 Driver Support

4.2.1.1 Audio Class 1.0

Audio Class 1.0 is fully supported in Apple OSX. Audio Class 1.0 is fully supported
in all modern Microsoft Windows operating systems (i.e. Windows XP and later).

4.2.1.2 Audio Class 2.0

Audio Class 2.0 is fully supported in Apple OSX since version 10.6.4. Audio Class
2.0 is not supported natively by Windows operating systems. It is therefore required
that a driver is installed. Documentation of Windows drivers is beyond the scope
of this document, please contact XMOS for further details.

4.2.2 Audio Class 1.0 Mode and Fall-back

The normal default for XMOS USB Audio applications is to run as a high-speed
Audio Class 2.0 device. However, some products may prefer to run in Audio Class
1.0 mode, this is normally to allow “driver-less” operation with Windows operating
systems.

To ensure specification compliance, Audio Class 1.0 mode always operates at
full-speed USB.

The device will operate in full-speed Audio Class 1.0 mode if one of the following
is true:

· The code is compiled for USB Audio Class 1.0 only.

· The code is compiled for USB Audio Class 2.0 and it is connected to the host
over a full speed link (and the Audio Class fall back is enabled).

The options to control this behavior are detailed in usb_audio_sec_custom_defines_api.

When running in Audio Class 1.0 mode the following restrictions are applied:

· MIDI is disabled.

· DFU is disabled (Since Windows operating systems would prompt for a DFU
driver to be installed)

XM0088546.1

USB Audio Design Guide 45/110

Due to bandwidth limitations of full-speed USB the following sample-frequency
restrictions are also applied:

· Sample rate is limited to a maximum of 48kHz if both input and output are
enabled.

· Sample rate is limited to a maximum of 96kHz if only input or output is enabled.

4.3 Audio Controls via Human Interface Device (HID)

The design supports simple audio controls such as play/pause, volume up/down
etc via the USB Human Interface Device Class Specification.

This functionality is enabled by setting the HID_CONTROLS define to 1. Setting to 0
disables this feature.

When turned on the following items are enabled:

1. HID descriptors are enabled in the Configuration Descriptor informing the host
that the device has HID interface

2. A Get Report Descriptor request is enabled in endpoint0.

3. Endpoint data handling is enabled in the buffer core

The Get Descriptor Request enabled in endpoint 0 returns the report descriptor for
the HID device. This details the format of the HID reports returned from the device
to the host. It maps a bit in the report to a function such as play/pause.

The USB Audio Framework implements a report descriptor that should fit most basic
audio device controls. If further controls are necessary the HID Report Descriptor
in descriptors.h should be modified. The default report size is 1 byte with the
format as follows:

Bit Function

0 Play/Pause

1 Scan Next Track

2 Scan Prev Track

3 Volume Up

4 Volume Down

5 Mute

6-7 Unused

Figure 28:

Default HID
Report
Format

On each HID report request from the host the function Vendor_ReadHidButtons(unsigned char hidData[])
is called from buffer(). This function is passed an array hidData[] by reference.
The programmer should report the state of his buttons into this array. For
example, if a volume up command is desired, bit 3 should be set to 1, else 0.

XM0088546.1

USB Audio Design Guide 46/110

Since the Vendor_ReadHidButtons() function is called from the buffer logical core,
care should be taken not to add to much execution time to this function since this
could cause issues with servicing other endpoints.

For a full example please see the HID section in §6.1.

4.4 Apple MFi compatibility

XMOS devices are capable of operating with Apple iPod, iPhone, and iPad devices
that feature USB host support. Information regarding this functionality is protected
by the Made For iPod (MFi) program and associated licensing.

Please contact XMOS for details and further documentation.

4.5 Audio Stream Formats

The design currently supports up to 3 different stream formats for output/playback,
selectable at run time. This is implemented using Alternative Settings to the
AudioStreaming interfaces.

An AudioStreaming interface can have Alternate Settings that can be used to change
certain characteristics of the interface and underlying endpoint. A typical use of
Alternate Settings is to provide a way to change the subframe size and/or number
of channels on an active AudioStreaming interface. Whenever an AudioStreaming
interface requires an isochronous data endpoint, it must at least provide the
default Alternate Setting (Alternate Setting 0) with zero bandwidth requirements
(no isochronous data endpoint defined) and an additional Alternate Setting that
contains the actual isochronous data endpoint.

For further information refer to 3.16.2 of USB Audio Device Class Definition for
Audio Devices23

Note, a 0-bandwidth alternative setting 0 is always implmented by the design (as
required by the USB specifications).

Customisatble parameters for the Alternate Settings are as follows.:

· Audio sample resolution

· Audio sample subslot size

· Audio data format

Currently only a single format is supported for the input/recording stream

23http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip

XM0088546.1

http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip

USB Audio Design Guide 47/110

4.5.1 Audio Subslot

An audio subslot holds a single audio sample. See USB Device Class Definition for
Audio Data Formats24 for full details. This is represented by bSubslotSize in the
devices descriptors

An audio subslot always contains an integer number of bytes. The specification
limits the possible audio sublot size (bSubslotSize) to 1, 2, 3 or 4 bytes per audio
subslot.

Typically, since it is run on a 32-bit machine, the value 4 is used for subslot -
this means that packing/unpacking samples is trivial. Other values can be used
(currently 4, 3 and 2 are supported by the design).

Other values may be used for the the following reasons:

· Bus-bandwidth needs to be efficiently utilised. For example maximising channel-
count/sample-rates in full-speed operation.

· To support restrictions with certain hosts. For example many Android based
hosts support only 16bit samples in a 2-byte subslot.

bSubSlot size is set using the following defines:

· When running in high-speed:

· HS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES

· HS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES

· HS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES

· When running in full-speed:

· FS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES

· FS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES

· FS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES

4.5.2 Audio Sample Resolution

An audio sample is represented using a number of bits (bBitResolution) less than or
equal to the number of total bits available in the audio subslot i.e. bBitResolution
<= bSubslotSize * 8. Supported values are 16, 24 and 32.

The following defines

· The following defines affect high-speed operation:

· HS_STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS

· HS_STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS

· HS_STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS

24http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip

XM0088546.1

http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip

USB Audio Design Guide 48/110

· The following defines affect full-speed operation:

· FS_STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS

· FS_STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS

· FS_STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS

4.5.3 Audio Format

The design supports two audio formats, PCM and Direct Stream Digital (DSD). A
DSD capable DAC is required for the latter.

The USB Audio Raw Data format is used to indicate DSD data (2.3.1.7.5 of USB
Device Class Definition for Audio Data Formats25). This use of a RAW/DSD format
in an alternative setting is termed Native DSD

The following defines affect both full-speed and high-speed operation:

· STREAM_FORMAT_OUTPUT_1_DATAFORMAT

· STREAM_FORMAT_OUTPUT_2_DATAFORMAT

· STREAM_FORMAT_OUTPUT_3_DATAFORMAT

The following options are supported:

· UAC_FORMAT_TYPEI_RAW_DATA

· UAC_FORMAT_TYPEI_PCM

Currently DSD is only supported on the output/playback stream

4 byte slot size with a 32 bit resolution is required for RAW/DSD format

Native DSD requires driver support and is available in the Thesycon Windows driver
via ASIO.

4.6 DSD over PCM (DoP)

While Native DSD support is available in Windows though a driver, OSX incorporates
a USB driver that only supports PCM, this is also true of the central audio engine,
CoreAudio. It is therefore not possible to use the scheme defined above using the
built in driver support of OSX.

Since the Apple OS only allows a PCM path a method of transporting DSD audio
data over PCM frames has been developed. This data can then be sent via the
native USB Audio support.

The XMOS USB Audio design(s) implement the method described in DoP Open
Standard 1.126

25http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip
26http://dsd-guide.com/sites/default/files/white-papers/DoP_openStandard_1v1.pdf

XM0088546.1

http://www.usb.org/developers/devclass_docs/Audio2.0_final.zip
http://dsd-guide.com/sites/default/files/white-papers/DoP_openStandard_1v1.pdf

USB Audio Design Guide 49/110

Standard DSD has a sample size of 1 bit and a sample rate of 2.8224MHz - this is
64x the speed of CD. This equates to the same data-rate as a 16 bit PCM stream at
176.4kHz.

In order to clearly identify when this PCM stream contains DSD and when it contains
PCM some header bits are added to the sample. A 24-bit PCM stream is therefore
used, with the most significant byte being used for a DSD marker (alternating 0x05
and 0xFA values).

When enabled, if USB audio design detects a un-interrupted run of these samples
(above a defined threshold) it switches to DSD mode, using the lower 16-bits as
DSD sample data. When this check for DSD headers fails the design falls back to
PCM mode. DoP detection and switching is done completely in the Audio/I2S core
(audio.xc). All other code handles the audio samples as PCM.

The design supports higher DSD/DoP rates (i.e. DSD128) by simply raising the
underlying PCM sample rate e.g. from 176.4kHz to 352.8kHz. The marker byte
scheme remains exactly the same regardless of rate.

DoP requires bit-perfect transmission - therefore any audio/volume processing will
break the stream.

XM0088546.1

5 Programming Guide

IN THIS CHAPTER

· Getting Started

· Project Structure

· Build Configurations

· Validated Build Configurations

· Configuration Naming Scheme

· A USB Audio Application

· Adding Custom Code

The following sections provide a guide on how to program the USB audio software
platform including instructions for building and running programs and creating
your own custom USB audio applications.

5.1 Getting Started

5.1.1 Building and Running

To build, select the relavant project (e.g. app_usb_aud_l1) in the Project Explorer
and click the Build icon.

To install the software, open the xTIMEcomposer Studio and follow these steps:

1. Choose File · Import.

2. Choose General · Existing Projects into Workspace and click Next.

3. Click Browse next to Select archive file and select the file firmware ZIP file.

4. Make sure the projects you want to import are ticked in the Projects list. Import
all the components and whichever applications you are interested in.

5. Click Finish.

To build, select the relevant project (e.g. app_usb_aud_l1) in the Project Explorer
and click the Build icon.

From the command line, you can follow these steps:

1. To install, unzip the package zip.

2. To build, change into the relevant application directory (e.g. app_usb_aud_l1)
and execute the command:

XM0088546.1

USB Audio Design Guide 51/110

xmake all

The main Makefile for the project is in the app directory (e.g. app_usb_aud_l1).
This file specifies build options and used modules. The Makefile uses the common
build infrastructure in module_xmos_common. This system includes the source files
from the relevant modules and is documented within module_xmos_common.

5.1.2 Installing the application onto flash

To upgrade the firmware you must, firstly:

1. Plug the USB Audio board into your computer.

2. Connect the xTAG-2 to the USB Audio board and plug the xTAG-2 into your PC
or Mac.

To upgrade the flash from xTIMEcomposer Studio, follow these steps:

1. Start xTIMEcomposer Studio and open a workspace.

2. Choose File · Import · C/XC · C/XC Executable.

3. Click Browse and select the new firmware (XE) file.

4. Click Next and Finish.

5. A Debug Configurations window is displayed. Click Close.

6. Choose Run · Flash Configurations.

7. Double-click xCORE application to create a new Flash configuration.

8. Browse for the XE file in the Project and C/XC Application boxes.

9. Ensure the xTAG-2 device appears in the target list.

10. Click Flash.

From the command line:

1. Open the XMOS command line tools (Desktop Tools Prompt) and execute the
following command:

xflash <binary >.xe

XM0088546.1

USB Audio Design Guide 52/110

5.2 Project Structure

5.2.1 Applications and Modules

The code is split into several module directories. The code for these modules
can be included by adding the module name to the USED_MODULES define in an
application Makefile:

module_xud Low level USB device library

module_usb_shared Common code for USB applications

module_usb_device Common code for USB device applications

module_usb_audio Common code for USB audio applications

module_spdif_tx S/PDIF transmit code

module_spdif_rx S/PDIF receive code

module_adat_rx ADAT receive code

module_usb_midi MIDI I/O code

module_dfu Device Firmware Upgrade code

Figure 29:

Modules used
by USB Audio

There are multiple application directories that contain Makefiles that build into
executables:

app_usb_aud_l1 USB Audio 2.0 Reference Design application

app_usb_aud_l2 USB Audio 2.0 Multichannel Reference Design application

app_usb_aud_skc_u16 U16 SliceKit with Audio Slice application

app_usb_aud_xk_u8_2c Multi-function Audio board application

app_usb_aud_skc_su1 DJ kit application

Figure 30:

USB Audio
Reference

Applications

5.3 Build Configurations

Due to the flexibility of the framework there are many different build options. For
example input and output channel count, Audio Class version, interface types etc.
A “build configuration” is a set of build options that combine to produce a certain
feature set.

Build configurations are listed in the application makefile with their associated
options, they can be built within the xTIMEComposer GUI or via the command like
as follows:

xmake CONFIG=<config name >

When a reference design application is compiled using “build all” (xmake all on
command line) all configurations are automatically built.

A naming scheme is employed in each application to link a feature set to a build
configuration/binary. Different variations of the same basic scheme are used. This
scheme is described in the next section.

XM0088546.1

USB Audio Design Guide 53/110

5.4 Validated Build Configurations

It is not possible for all build configuration permutations to be exhaustively tested.
XMOS therefore test a subset of build configurations for proper behaviour, these
are based on popular device configurations.

The presence of a build configuration in an application signifies it as a Validated
Build Configuration and should be considered supported.

5.5 Configuration Naming Scheme

This section describes the naming scheme for the provided build configurations
(and therefore binaries) generated for each build configuration

Each relevant build option is assigned a position in the configuration name, with
a character denoting the options value (normally ‘x’ is used to denote “off” or
“disabled”)

For example, Figure 31 lists the build options for the single tile L-Series Reference
Design.

Build Option Name Options Denoted by

Audio Class Version 1 or 2 1 or 2

Audio Input on or off i or x

Audio Output on or off o or x

MIDI on or off m or x

S/PDIF Output on or off s or x

Figure 31:

Single tile
L-Series build

options

For example a binary named 2ioxs would indicate Audio Class 2.0 with input and
output enabled, MIDI disabled, SPDIF output enabled.

5.6 A USB Audio Application

This section provides a walk through of the single tile USB Audio Reference Design
(L-Series) example, which can be found in the app_usb_aud_l1 directory.

In each application directory the src directory is arranged into two folders:

#. An core directory containing source items that must be made available to the
USB Audio framework

1. An extensions directory that includes extensions to the framework such as
CODEC config etc

The core folder for each application contains:

1. A .xn file to describe the hardware platform the app will run on

2. A custom defines file: customdefines.h for framework configuration

XM0088546.1

USB Audio Design Guide 54/110

5.6.1 Custom Defines

The customdefines.h file contains all the #defines required to tailor the USB audio
framework to the particular application at hand. Typically these over-ride default
values in devicedefines.h in module_usb_audio.

First there are defines to determine overall capability. For this appliction S/PDIF
output and DFU are enabled. Note that ifndef is used to check that the option is
not already defined in the makefile.

/* Enable/Disable MIDI - Default is MIDI off */
#ifndef MIDI
#define MIDI (0)
#endif

/* Enable/Disable SPDIF - Default is SPDIF on */
#ifndef SPDIF_TX
#define SPDIF_TX (1)
#endif

Next, the file defines the audio properties of the application. This application has
stereo in and stereo out with an S/PDIF output that duplicates analogue channels 1
and 2 (note channels are indexed from 0):

/* Number of USB streaming channels - Default is 2 in 2 out */
#ifndef NUM_USB_CHAN_IN
#define NUM_USB_CHAN_IN (2) /* Device to Host */
#endif
#ifndef NUM_USB_CHAN_OUT
#define NUM_USB_CHAN_OUT (2) /* Host to Device */
#endif

/* Number of IS2 chans to DAC ..*/
#ifndef I2S_CHANS_DAC
#define I2S_CHANS_DAC (2)
#endif

/* Number of I2S chans from ADC */
#ifndef I2S_CHANS_ADC
#define I2S_CHANS_ADC (2)
#endif

/* Index of SPDIF TX channel (duplicated DAC channels 1/2) */
#define SPDIF_TX_INDEX (0)

The file then sets some defines for the master clocks on the hardware and the
maximum sample-rate for the device.

XM0088546.1

USB Audio Design Guide 55/110

/* Master clock defines (in Hz) */
#define MCLK_441 (256*44100) /* 44.1, 88.2 etc */
#define MCLK_48 (512*48000) /* 48, 96 etc */

/* Maximum frequency device runs at */
#ifndef MAX_FREQ
#define MAX_FREQ (192000)
#endif

Finally, there are some general USB identification defines to be set. These are set
for the XMOS reference design but vary per manufacturer:

#define VENDOR_ID (0 x20B1) /* XMOS VID */
#define PID_AUDIO_2 (0 x0002) /* L1 USB Audio Reference Design PID */
#define PID_AUDIO_1 (0 x0003) /* L1 USB Audio Reference Design PID */

For a full description of all the defines that can be set in customdefines.h see §7.1

5.6.2 Configuration Functions

In addition to the custom defines file, the application needs to provide implemen-
tations of user functions that are specific to the application.

For app_usb_aud_l1 the implementations can be found in audiohw.xc.

Firstly, code is required to initialise the external audio hardware. In the case of the
CODEC on the L1 Refence Design board there is no required action so the funciton
is left empty:

void AudioHwInit(chanend ?c_codec)
{

return;
}

On every sample-rate change a call is made to AudioHwConfig(). In the case of the
CODEC on the L1 Reference Design baord the CODEC must be reset and set the
relevant clock input from the two oscillators on the board.

Both the CODEC reset line and clock selection line are attached to the 32 bit port
32A. This is accessed through the port32A_peek and port32A_out functions:

#define PORT32A_PEEK(X) {asm("peek %0, res [%1]":"=r"(X):"r"(XS1_PORT_32A))
↩ ;}

#define PORT32A_OUT(X) {asm("out res[%0], %1"::"r"(XS1_PORT_32A),"r"(X));}

XM0088546.1

USB Audio Design Guide 56/110

/* Configures the CODEC for the required sample frequency.
* CODEC reset and frequency select are connected to port 32A
*
* Port 32A is shared with other functionality (LEDs etc) so we
* access via inline assembly. We also take care to retain the
* state of the other bits.
*/

void AudioHwConfig(unsigned samFreq , unsigned mClk , chanend ?c_codec ,
↩ unsigned dsdMode ,

unsigned samRes_DAC , unsigned samRes_ADC)
{

timer t;
unsigned time;
unsigned tmp;

/* Put codec in reset and set master clock select appropriately */

/* Read current port output */
PORT32A_PEEK(tmp);

/* Put CODEC reset line low */
tmp &= (~ P32A_COD_RST);

if ((samFreq % 22050) == 0)
{

/* Frequency select low for 441000 etc */
tmp &= (~ P32A_CLK_SEL);

}
else //if((samFreq % 24000) == 0)
{

/* Frequency select high for 48000 etc */
tmp |= P32A_CLK_SEL;

}

PORT32A_OUT(tmp);

/* Hold in reset for 2ms */
t :> time;
time += 200000;
t when timerafter(time) :> int _;

/* Codec out of reset */
PORT32A_PEEK(tmp);
tmp |= P32A_COD_RST;
PORT32A_OUT(tmp);

}

Finally, the application has functions for audio streaming start/stop that enable/dis-
able an LED on the board (also on port 32A):

XM0088546.1

USB Audio Design Guide 57/110

#include <xs1.h>
#include "port32A.h"

/* Functions that handle functions that must occur on stream
* start/stop e.g. DAC mute/un -mute.These need implementing
* for a specific design.
*
* Implementations for the L1 USB Audio Reference Design
*/

/* Any actions required for stream start e.g. DAC un-mute - run every
* stream start.
*
* For L1 USB Audio Reference Design we illuminate LED B (connected
* to port 32A)
*
* Since this port is shared with other functionality inline assembly
* is used to access the port resource.
*/

void UserAudioStreamStart(void)
{

int x;

/* Peek at current port value using port 32A resource ID */
asm("peek %0, res [%1]":"=r"(x):"r"(XS1_PORT_32A));

x |= P32A_LED_B;

/* Output to port */
asm("out res[%0], %1"::"r"(XS1_PORT_32A),"r"(x));

}

/* Any actions required on stream stop e.g. DAC mute - run every
* stream stop
* For L1 USB Audio Reference Design we extinguish LED B (connected
* to port 32A)
*/

void UserAudioStreamStop(void)
{

int x;

asm("peek %0, res [%1]":"=r"(x):"r"(XS1_PORT_32A));
x &= (~ P32A_LED_B);
asm("out res[%0], %1"::"r"(XS1_PORT_32A),"r"(x));

}

5.6.3 The main program

The main() function is shared across all applications is therefore part of the
framework. It is located in sc_usb_audio and contains:

· A declaration of all the ports used in the framework. These vary depending on
the PCB an application is running on.

· A main function which declares some channels and then has a par statement
which runs the required cores in parallel.

XM0088546.1

USB Audio Design Guide 58/110

The framework supports devices with multiple tiles so it uses the on tile[n]:
syntax.

The first core run is the XUD library:

#if (AUDIO_CLASS ==2)
XUD_Manager(c_xud_out , ENDPOINT_COUNT_OUT , c_xud_in , ENDPOINT_COUNT_IN ,

c_sof , epTypeTableOut , epTypeTableIn , p_usb_rst ,
clk , 1, XUD_SPEED_HS , XUD_PWR_CFG);

#else
XUD_Manager(c_xud_out , ENDPOINT_COUNT_OUT , c_xud_in , ENDPOINT_COUNT_IN ,

c_sof , epTypeTableOut , epTypeTableIn , p_usb_rst ,
clk , 1, XUD_SPEED_FS , XUD_PWR_CFG);

#endif

The make up of the channel arrays connecting to this driver are described in §7.3.

The channels connected to the XUD driver are fed into the buffer and decouple
cores:

XM0088546.1

USB Audio Design Guide 59/110

buffer(c_xud_out[ENDPOINT_NUMBER_OUT_AUDIO], /* Audio Out*/
c_xud_in[ENDPOINT_NUMBER_IN_AUDIO], /* Audio In */

#if (NUM_USB_CHAN_IN == 0) || defined(UAC_FORCE_FEEDBACK_EP)
c_xud_in[ENDPOINT_NUMBER_IN_FEEDBACK], /* Audio FB */

#endif
#ifdef MIDI

c_xud_out[ENDPOINT_NUMBER_OUT_MIDI], /* MIDI Out */ // 2
c_xud_in[ENDPOINT_NUMBER_IN_MIDI], /* MIDI In */ // 4
c_midi ,

#endif
#ifdef IAP

c_xud_out[ENDPOINT_NUMBER_OUT_IAP], /* iAP Out */
c_xud_in[ENDPOINT_NUMBER_IN_IAP], /* iAP In */

#ifdef IAP_INT_EP
c_xud_in[ENDPOINT_NUMBER_IN_IAP_INT], /* iAP Interrupt In */

#endif
c_iap ,

#ifdef IAP_EA_NATIVE_TRANS
c_xud_out[ENDPOINT_NUMBER_OUT_IAP_EA_NATIVE_TRANS],
c_xud_in[ENDPOINT_NUMBER_IN_IAP_EA_NATIVE_TRANS],
c_EANativeTransport_ctrl ,
c_ea_data ,

#endif
#endif
#if defined(SPDIF_RX) || defined(ADAT_RX)

/* Audio Interrupt - only used for interrupts on external clock change
↩ */

c_xud_in[ENDPOINT_NUMBER_IN_INTERRUPT],
c_clk_int ,

#endif
c_sof , c_aud_ctl , p_for_mclk_count

#ifdef HID_CONTROLS
, c_xud_in[ENDPOINT_NUMBER_IN_HID]

#endif
#ifdef CHAN_BUFF_CTRL

, c_buff_ctrl
#endif
);

{
thread_speed ();
decouple(c_mix_out

#ifdef CHAN_BUFF_CTRL
, c_buff_ctrl

#endif
);

}

These then connect to the audio driver which controls the I2S output and S/PDIF
output (if enabled). If S/PDIF output is enabled, this component spawns into two
cores as opposed to one.

XM0088546.1

USB Audio Design Guide 60/110

{
thread_speed ();

#ifdef MIXER
#define AUDIO_CHANNEL c_mix_out
#else
#define AUDIO_CHANNEL c_aud_in
#endif

audio(AUDIO_CHANNEL ,
#if defined(SPDIF_TX) && (SPDIF_TX_TILE != AUDIO_IO_TILE)

c_spdif_tx ,
#endif
#if defined(SPDIF_RX) || defined(ADAT_RX)

c_dig_rx ,
#endif

c_aud_cfg , c_adc
#if XUD_TILE != 0

, dfuInterface
#endif
#if (NUM_PDM_MICS > 0)

, c_pdm_pcm
#endif
#ifdef RUN_DSP_TASK

, i_dsp
#endif

);
}

#if defined(SPDIF_RX) || defined(ADAT_RX)
{

thread_speed ();

clockGen(c_spdif_rx , c_adat_rx , p_pll_clk , c_dig_rx , c_clk_ctl ,
↩ c_clk_int);

}
#endif

Finally, if MIDI is enabled you need a core to drive the MIDI input and output.
The MIDI core also optionally handles authentication with Apple devices. Due to
licensing issues this code is only available to Apple MFI licensees. Please contact
XMOS for details.

on tile[MIDI_TILE]:
{

thread_speed ();
usb_midi(p_midi_rx , p_midi_tx , clk_midi , c_midi , 0, null , null , null ,
↩ null);

}

5.7 Adding Custom Code

The flexibility of the USB audio solution means that you can modify the reference
applications to change the feature set or add extra functionality. Any part of the
software can be altered with the exception of the XUD library.

XM0088546.1

USB Audio Design Guide 61/110

The reference designs have been verified against a variety of host OS types, across
different samples rates. However, modifications to the code may invalidate the
results of this verification and you are strongly encouraged to fully re- test the
resulting software.

The general steps are:

1. Make a copy of the eclipse project or application directory (.e.g. app_usb_aud_l1
or app_usb_aud_l2) you wish to base your code on, to a separate directory with
a different name.

2. Make a copy of any modules you wish to alter (most of the time you probably
do not want to do this). Update the Makefile of your new application to use
these new custom modules.

3. Make appropriate changes to the code, rebuild and reflash the device for testing.

Once you have made a copy, you need to:

1. Provide a .xn file for your board (updating the TARGET variable in the Makefile
appropriately).

2. Update device_defines.h with the specific defines you wish to set.

3. Update main.xc.

4. Add any custom code in other files you need.

The following sections show some example changes with a high level overview of
how to change the code.

5.7.1 Example: Changing output format

You may wish to customize the digital output format e.g. for a CODEC that expects
sample data left justified with respect to the word clock.

To do this you need to alter the main audio driver loop in audio.xc. After the
alteration you need to re-test the functionality. The XMOS Timing Analyzer can
help guarantee that your changes do not break the timing requirement of this core.

5.7.2 Example: Adding DSP to output stream

To add some DSP requires an extra core of computation, so some existing func-
tionality needs to be removed (e.g. S/PDIF). Follow these steps to update the
code:

1. Remove some functionality using the defines in §7.1 to free up a core.

2. Add another core to do the DSP. This core will probably have three XC channels:
one channel to receive samples from decoupler core and another to output to
the audio driver—this way the core ‘intercepts’ audio data on its way to the
audio driver; the third channel can receive control commands from Endpoint 0.

XM0088546.1

USB Audio Design Guide 62/110

3. Implement the DSP on this core. This needs to be synchronous (i.e. for every
sample received from the decoupler, a sample needs to be outputted to the
audio driver).

XM0088546.1

6 USB Audio Applications

IN THIS CHAPTER

· USB Audio 2.0 Reference Design (L-Series) Application

· The USB Audio 2.0 DJ Kit (U-Series)

· The USB Audio 2.0 Multichannel Reference Design (L-Series) Software

· The Multi-function Audio Kit (U-Series)

· The U-Series Multi-Channel USB Audio Kit

· The xCORE-200 Multi-Channel Audio Board

· The xCORE-200 Array Microphone Board

In addition to the overall framework, reference design applications are provided.
These applications provide qualified configurations of the framework which support
and are validated on accompanying hardware. This section looks at how the various
applictions customise and extend the framework.

6.1 USB Audio 2.0 Reference Design (L-Series) Application

The USB Audio 2.0 Reference Design is an application of the USB audio framework
specifically for the hardware described in §2.6 and is implemented on the L-Series
single tile device (500MIPS). The code can be found in app_usb_aud_l2

The software design supports two channels of audio at sample frequencies up to
192kHz and uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint buffer

· Decoupler

· Audio Driver

· Device Firmware Upgrade (DFU)

· S/PDIF Transmitter or MIDI

The diagrams Figure 32 and Figure 33 show the software layout of the code running
on the XS1-L chip. Each unit runs in a single core concurrently with the others units.
The lines show the communication between each functional unit. Due to the MIPS
requirement of the USB driver (see §3.14), only six cores can be run on the single
tile L-Series device so only one of S/PDIF transmit or MIDI can be supported.

XM0088546.1

USB Audio Design Guide 64/110

Figure 32:

Single Tile
L-Series

Software
Core Diagram

(with S/PDIF
TX)

Figure 33:

Single Tile
L-Series

Software
Core Diagram

(with MIDI
I/O)

6.1.1 Port 32A

Port 32A on the XS1-L device is a 32-bit wide port that has several separate signal
bit signal connected to it, accessed by multiple cores. To this end, any output
to this port must be read-modify-write i.e. to change a single bit of the port, the
software reads the current value being driven across 32 bits, flips a bit and then
outputs the modified value.

XM0088546.1

USB Audio Design Guide 65/110

This method of port usage (i.e. sharing a port between cores) is outside the
standard XC usage model so is implemented using inline assembly as required.
The peek instruction is used to get the current output value on the port:

/* Peek at current port value using port 32A resource ID */
asm("peek %0, res [%1]":=r"(x):"r"(XS1_PORT_32A));

The required output value is then assembled using the relevant bit-wise operation(s)
before the out instruction is used directly to output data to the port:

/* Output to port */
asm("out res[%0], %1"::"r"(XS1_PORT_32A),"r"(x));

The table Figure 34 shows the signals connected to port 32A on the USB Audio
Class 2.0 reference design board. Note, they are all outputs from the XS1-L device.

Pin Port Signal

XD49 P32A0 USB_PHY_RST_N

XD50 P32A1 CODEC_RST_N

XD51 P32A2 MCLK_SEL

XD52 P32A3 LED_A

XD53 P32A4 LED_B

Figure 34:

Port 32A
Signals

6.1.2 Clocking

The board has two on-board oscillators for master clock generation. These produce
11.2896MHz for sample rates 44.1, 88.2, 176.4KHz etc and 24.567MHz for sample
rates 48, 96, 192kHz etc.

The required master clock is selected from one of these using an external mux cir-
cuit via port P32A[2] (pin 2 of port 32A). Setting P32A[2] high selects 11.2896MHz,
low selects 24.576MHz.

The reference design board uses a 24 bit, 192kHz stereo audio CODEC (Cirrus
Logic CS4270).

The CODEC is configured to operate in stand-alone mode meaning that no serial
configuration interface is required. The digital audio interface is set to I2S mode
with all clocks being inputs (i.e. slave mode).

The CODEC has three internal modes depending on the sampling rate used. These
change the oversampling ratio used internally in the CODEC. The three modes are
shown below:

In stand-alone mode, the CODEC automatically determines which mode to operate
in based on input clock rates.

XM0088546.1

USB Audio Design Guide 66/110

L8A-64-TQ128
 Codec

CS427
0

11.2896 MHz
Crystal

24.576 MHz
Crystal

MCLK

BCLK
LRCLK

SDIN
SDOUT

MCLK_SEL

Figure 35:

Audio Clock
Connections

CODEC mode CODEC sample rate range (kHz)

Single-Speed 4-54

Double-Speed 50-108

Quad-Speed 100-216

Figure 36:

CODEC
Modes

The internal master clock dividers are set using the MDIV pins. MDIV is tied low
and MDIV2 is connected to bit 2 of port 32A (as well as to the master clock select).
With MDIV2 low, the master clock must be 256Fs in single-speed mode, 128Fs in
double-speed mode and 64Fs in quad-speed mode. This allows an 11.2896MHz
master clock to be used for sample rates of 44.1, 88.2 and 176.4kHz.

With MDIV2 high, the master clock must be 512Fs in single-speed mode, 256Fs
in double-speed mode and 128Fs in quad-speed mode. This allows a 24.576MHz
master clock to be used for sample rates of 48, 96 and 192kHz.

When changing sample frequency, the CodecConfig() function first puts the CODEC
into reset by setting P32A[1] low. It selects the required master clock/CODEC
dividers and keeps the CODEC in reset for 1ms to allow the clocks to stabilize. The
CODEC is brought out of reset by setting P32A[1] back high.

6.1.3 HID

The reference design implements basic HID controls. The call to
vendor_ReadHidButtons() simply reads from buttons A and B and returns their
state in the relevant bits depending on the desired functionality (play/pause/skip
etc). Note the buttons are active low, the HID controls active high. The buttons are
therefore read and then inverted.

XM0088546.1

USB Audio Design Guide 67/110

/* Write HID Report Data into hidData array
*
* Bits are as follows:
* 0: Play/Pause
* 1: Scan Next Track
* 2: Scan Prev Track
* 3: Volume Up
* 4: Volime Down
* 5: Mute
*/

void UserReadHIDButtons(unsigned char hidData [])
{
#ifndef MIDI

unsigned a, b;

p_but_a :> a;
p_but_b :> b;

a = (~a) & 1;
b = (~b) & 1;

/* Assign buttons A and B to Vol Up/Down */
hidData [0] = (a << HID_CONTROL_VOLUP_SHIFT) | (b <<
↩ HID_CONTROL_VOLDN_SHIFT);

#endif
}

In the example above the buttons are assigned to volume up/down.

6.1.4 Validated Build Options

The reference design can be built in several ways by changing the build options.
These are described in usb_audio_sec_custom_defines_api.

The design has only been fully validated against the build options as set in the
application as distributed. See §5.3 for details and binary naming.

In practise, due to the similarities between the U-Series and L-Series feature set, it
is fully expected that all listed U-Series configurations will operate as expected on
the L-Series and vice versa.

6.1.4.1 Configuration 2ioxs

This configuration runs in high-speed Audio Class 2.0 mode, has the mixer disabled,
supports 2 channels in, 2 channels out and supports sample rates up to 192kHz
and S/PDIF transmit.

6.1.4.2 Configuration 2iomx

This configuration disables S/PDIF and enables MIDI.

XM0088546.1

USB Audio Design Guide 68/110

This configuration can be achieved by in the Makefile by defining SPDIF_TX as zero:

-DSPDIF_TX =0

and MIDI as 1:

-DMIDI =1

6.1.4.3 Configuration 1ioxs

This configuration is similar to the first configuration apart from it runs in Audio
1.0 over full-speed USB.

This is achieved in the Makefile by:

-DAUDIO_CLASS =1

6.2 The USB Audio 2.0 DJ Kit (U-Series)

The USB Audio 2.0 Reference Design is an application of the USB audio framework
specifically for the hardware described in §2.5 and is implemented on the U-Series
single tile device (500MIPS). The software design supports four channels of audio
at sample frequencies up to 192kHz and uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint buffer

· Decoupler

· Audio Driver

· Device Firmware Upgrade (DFU)

· S/PDIF Transmitter or MIDI

The software layout is the identical to the single tile L-Series Reference Design and
therefore the diagrams Figure 32 and Figure 33 show the software layout of the
code running on the XS1-U chip.

As with the L-Series, each unit runs in a single core concurrently with the others
units.

Due to the MIPS requirement of the USB driver (see §3.14), only six cores can be
run on the single tile L-Series device so only one of S/PDIF transmit or MIDI can be
supported.

XM0088546.1

USB Audio Design Guide 69/110

6.2.1 Clocking and Clock Selection

The actual hardware involved in the clock generation is somewhat different to the
single tile L-Series board. Instead of two separate oscillators and switching logic
a single oscillator with a Phaselink PLL is used to generate fixed 24.576MHz and
22.5792MHz master-clocks.

This makes no change for the selection of master-clock in terms of software
interaction: A single pin is (bit 1 of port 4C) is still used to select between the two
master-clock frequencies.

The advantages of this system are fewer components and a smaller board area.

When changing sample frequency, the CodecConfig() function first puts the CODEC
into reset by setting P4C[2] low. It selects the required master clock and keeps the
CODEC in reset for 1ms to allow the clocks to stabilize. The CODEC is brought out
of reset by setting P4C[2] back high.

6.2.2 CODEC Configuration

The board is equipped with two stereo audio CODECs (Cirrus Logic CS4270) giving
4 channels of input and 4 channels of output. Configuration of these CODECs
takes place using I2C, with both sharing the same I2C bus. The design uses the
open source I2C component sc_i2c27

6.2.3 U-Series ADC

The codebase includes code exampling how the ADC built into the U-Series device
can be used. Once setup a pin is used to cause the ADC to sample, this sample is
then sent via a channel to the xCORE device.

On the DJ kit the ADC is clocked via the same pin as the I2S LR clock. Since this
means that a ADC sample is received every audio sample the ADC is setup and it’s
data received in the audio driver core (audio.xc).

The code simply writes the ADC value to the global variable g_adcVal for use
elsewhere in the program as required. The ADC code is enabled by defining
SU1_ADC_ENABLE as 1.

6.2.4 HID Example

The codebase includes an example of a HID volume control implementation based
on ADC data. This code should be considered an example only since an absolute
ADC input does not serve as an ideal input to a relative HID volume control. Buttons
(such as that on the single tile L-Series board) or a Rotary Encoder would be a more
fitting choice of input component.

This code is enabled if HID_CONTROLS, SU1_ADC_ENABLE and ADC_VOL_CONTROL are all
defined as 1.

27http://www.github.com/xcore/sc_i2c

XM0088546.1

http://www.github.com/xcore/sc_i2c

USB Audio Design Guide 70/110

The Vendor_ReadHIDButtons() function simply looks at the value from the ADC,
if is near the maximum value it reports a volume up, near the minimum value a
volume down is reported. If the ADC value is mid-range no event is reported. The
code is shown below:

void Vendor_ReadHIDButtons(unsigned char hidData [])
{

unsigned adcVal;
int diff;

hidData [0] = 0;

#if defined(ADC_VOL_CONTROL) && (ADC_VOL_CONTROL == 1)
adcVal = g_adcVal >> 20;

if(adcVal < (ADC_MIN + THRESH))
{

/* Volume down */
hidData [0] = 0x10;

}
else if (adcVal > (ADC_MAX - THRESH))
{

/* Volume up */
hidData [0] = 0x08;

}

6.2.5 Validated Build Options

The reference design can be built in several ways by changing the build options.
These are described in usb_audio_sec_custom_defines_api.

The design has only been fully validated against the build options as set in the
application as distributed. See §5.3 for details and binary naming scheme.

These fully validated build configurations are listed below. In practise, due to the
similarities between the U-Series and L-Series feature set, it is fully expected that
all listed U-Series configurations will operate as expected on the L-Series and vice
versa.

6.2.5.1 Configuration 2ioxs

This configuration runs in high-speed Audio Class 2.0 mode, has the mixer disabled,
supports 2 channels in, 2 channels out, supports sample rates up to 192kHz and
S/PDIF transmit.

6.2.5.2 Configuration 2iomx

This configuration disables S/PDIF and enables MIDI.

XM0088546.1

USB Audio Design Guide 71/110

This configuration can be achieved by in the Makefile by defining SPDIF_TX as zero:

-DSPDIF_TX =0

and MIDI as 1:

-DMIDI =1

6.2.5.3 Configuration 2ixxx

This configuration is input only (NUM_USB_CHAN_OUT set to zero). I.e. a microphone
application or similar.

6.2.5.4 Configuration 1ioxs

This configuration is similar to the first configuration apart from it runs in Audio
1.0 over full-speed USB.

This is achieved in the Makefile by:

-DAUDIO_CLASS =1

6.2.5.5 Configuration 1xoxs

This configuration is similar to the configuration above in that it runs in Audio 1.0
over full-speed USB. However, the it is output only (i.e. the input path is disabled
with -DNUM_USB_CHAN_IN=0

6.3 The USB Audio 2.0 Multichannel Reference Design (L-Series)
Software

The USB Audio 2.0 Multichannel Reference Design is an application of the USB audio
framework specifically for the hardware described in §2.6 and is implemented on
an L-Series dual tile device (1000MIPS). The software design supports up to 16
channels of audio in and 10 channels of audio out and supports sample frequencies
up to 192 kHz and uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint buffer

· Decoupler

XM0088546.1

USB Audio Design Guide 72/110

· Audio Driver

· Device Firmware Upgrade (DFU)

· Mixer

· S/PDIF Transmitter

· S/PDIF Receiver

· ADAT Receiver

· Clockgen

· MIDI

Figure 37 shows the software layout of the USB Audio 2.0 Multichannel Reference
Design.

tile[0]

tile[1]

Figure 37:

Dual Tile
L-Series

Reference
Design Core

Layout

XM0088546.1

USB Audio Design Guide 73/110

6.3.1 Clocking

For complete clocking flexibility the dual tile L-Series reference design drives a
reference clock to an external fractional-n clock multiplier IC (Cirrus Logic CS2300).
This in turn generates the master clock used over the design. This is described in
§3.10.

6.3.2 Validated Build Options

The reference design can be built in several ways by changing the option described
in usb_audio_sec_custom_defines_api. However, the design has only been validated
against the build options as set in the application as distributed with the following
four variations.

6.3.2.1 Configuration 1

All the #defines are set as per the distributed application. It has the mixer enabled,
supports 16 channels in, 10 channels out and supports sample rates up to 96kHz.

6.3.2.2 Configuration 2

The same as Configuration 1 but with the CODEC set as I2S master (and the XCORE
Tile as slave).

This configuration can be achieved by commenting out the following line in
customdefines.h:

//# define CODEC_SLAVE 1

6.3.2.3 Configuration 3

This configuration supports sample rates up to 192kHz but only supports 10
channels in and out. It also disables ADAT receive and the mixer. It can be
achieved by commenting out the following lines in customdefines.h:

//# define MIXER
//# define ADAT_RX 1

and changing the following defines to:

#define NUM_USB_CHAN_IN (10)
#define I2S_CHANS_ADC (6)
#define SPDIF_RX_INDEX (8)

XM0088546.1

USB Audio Design Guide 74/110

6.3.2.4 Configuration 4

The same as Configuration 3 but with the CODEC set as I2S master. This configura-
tion can be made by making the changes for Configuration 3 and commenting out
the following line in customdefines.h:

//# define CODEC_SLAVE 1

6.4 The Multi-function Audio Kit (U-Series)

Provided is an application of the USB audio framework specifically for the hardware
described in §2.3 and is implemented on the U-Series single tile device (500MIPS).
The application assumes a standard USB B socket (i.e. USB device) is attached as
the USB connectivity method.

The software design supports 2 channels channels of audio at sample frequencies
up to 192kHz and uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint buffer

· Decoupler

· Audio Driver

· Device Firmware Upgrade (DFU)

· S/PDIF Transmitter or MIDI

The software layout is the identical to the single tile L-Series Reference Design and
therefore the diagrams Figure 32 and Figure 33 show the software layout of the
code running on the XS1-U chip.

As with the L-Series, each unit runs in a single core concurrently with the others
units. The lines show the communication between each functional unit.

Due to the MIPS requirement of the USB driver (see §3.14), only six cores can be
run on the single tile L-Series device so only one of S/PDIF transmit or MIDI can be
supported.

6.4.1 Clocking and Clock Selection

A single oscillator with a Phaselink PLL is used to generate fixed 24.576MHz and
22.5792MHz master-clocks.

This makes no change for the selection of master-clock in terms of software
interaction: A single pin is (bit 1 of port 32A) is used to select between the two
master-clock frequencies.

XM0088546.1

USB Audio Design Guide 75/110

When changing sample frequency, the AudioHwConfig() function first puts the
both the DAC and ADC into reset by setting P4C[0] and P4C[1] low. It selects the
required master clock and keeps both the DAC and ADC in reset for 1ms to allow
the clocks to stabilize. The DAC and ADC are brought out of reset by setting P4C[0]
and P4C[1] back high.

6.4.2 DAC and ADC Configuration

The board is equipped with a single stereo audio DAC (Cirrus Logic CS4392) and a
single stereo ADC (Cirrus Logic 5340) giving 2 channels of input and 2 channels of
output.

Configuration of the DAC takes place using I2C. The design uses the open source
I2C component sc_i2c28 No configuration of the ADC is required in software, it is
set into slave mode via its configuration pins on the board.

6.4.3 U-Series ADC

The codebase includes code exampling how the ADC built into the U-Series device
can be used. Once setup a pin is used to cause the ADC to sample, this sample is
then sent via a channel to the xCORE device.

On the multi-function audio board the ADC is clocked via the same pin as the I2S
LR clock. Since this means that a ADC sample is received every audio sample the
ADC is setup and it’s data received in the audio driver core (audio.xc).

The ADC inputs for the U8 device are simply pinned out to test point headers. As
such there is no example functionality attached to the ADC data.

6.4.4 HID Example

The codebase includes an example of a HID controls implementation using the two
buttons and switch on the multi-function audio board.

This example code is enabled if HID_CONTROLS are all defined as 1. When this define
is enabled a call to the function Vendor_ReadHIDButtons() is enabled and must be
implemented. Failing to do so will result in a build error.

The example Vendor_ReadHIDButtons() firstly reads the state of the buttons and
switch. These inputs are all connected to the same 4-bit port. Since the buttons
are active low and the HID report is active high the value read is inverted. Some
bitwise operations are then used to exact the individual states of the buttons and
switch.

If the switch input is low (i.e. high when inverted) then the button states are shifted
up into the position required perform volume up and down and written into the
hidData[] array:

28http://www.github.com/xcore/sc_i2c

XM0088546.1

http://www.github.com/xcore/sc_i2c

USB Audio Design Guide 76/110

hidData [0] = (a << HID_CONTROL_VOLUP_SHIFT) | (b << HID_CONTROL_VOLDN_SHIFT
↩);

If the switch input is high (i.e. low when inverted) then the buttons states are
used to either indicate play/pause or next/previous. Based on counter and a small
state-machine a single click on either button provides a play/pause command. A
double tap on button A or B provides a previous or next command respectively.

The full code listing is shown below:

XM0088546.1

USB Audio Design Guide 77/110

void UserReadHIDButtons(unsigned char hidData [])
{

/* Variables for buttons a & b and switch sw */
unsigned a, b, sw, tmp;

p_sw :> tmp;

/* Buttons are active low */
tmp = ~tmp;

a = (tmp & (P_GPI_BUTA_MASK))>>P_GPI_BUTA_SHIFT;
b = (tmp & (P_GPI_BUTB_MASK))>>P_GPI_BUTB_SHIFT;
sw = (tmp & (P_GPI_SW1_MASK))>>P_GPI_SW1_SHIFT;

if(sw)
{

/* Assign buttons A and B to Vol Up/Down */
hidData [0] = (a << HID_CONTROL_VOLUP_SHIFT) | (b <<
↩ HID_CONTROL_VOLDN_SHIFT);

}
else
{

/* Assign buttons A and B to play for single tap , next/prev for
↩ double tap */

if(b)
{

multicontrol_count ++;
wait_counter = 0;

lastA = 0;
}
else if(a)
{

multicontrol_count ++;
wait_counter = 0;

lastA = 1;
}
else
{

if(multicontrol_count > THRESH)
{

state ++;
}

wait_counter ++;

if(wait_counter > MULTIPRESS_WAIT)
{

if(state == STATE_PLAY)
{

hidData [0] = (1 << HID_CONTROL_PLAYPAUSE_SHIFT)
↩ ;

}
else if(state == STATE_NEXTPREV)

{
if(lastA)

hidData [0] = (1 << HID_CONTROL_PREV_SHIFT);
else

hidData [0] = (1 << HID_CONTROL_NEXT_SHIFT);
}

state = STATE_IDLE;
}
multicontrol_count = 0;

}
}

}

XM0088546.1

USB Audio Design Guide 78/110

6.4.5 Validated Build Options

The reference design can be built in several ways by changing the build options.
These are described in §7.1.

The design has only been fully validated against the build options as set in the
application as distributed. See §5.3 for details and binary naming scheme.

These fully validated build configurations are listed below. In practise, due to the
similarities between the U-Series and L-Series feature set, it is fully expected that
all listed U-Series configurations will operate as expected on the L-Series and vice
versa.

6.4.5.1 Configuration 2ioxs

This configuration runs in high-speed Audio Class 2.0 mode, has the mixer disabled,
supports 2 channels in, 2 channels out, supports sample rates up to 192kHz and
S/PDIF transmit.

6.4.5.2 Configuration 2iomx

This configuration disables S/PDIF and enables MIDI.

This configuration can be achieved by in the Makefile by defining SPDIF_TX as zero:

-DSPDIF_TX =0

and MIDI as 1:

-DMIDI =1

6.4.5.3 Configuration 2ixxx

This configuration is input only (NUM_USB_CHAN_OUT set to zero). I.e. a microphone
application or similar.

6.4.5.4 Configuration 1ioxs

This configuration is similar to the first configuration apart from it runs in Audio
1.0 over full-speed USB.

This is achieved in the Makefile by:

-DAUDIO_CLASS =1

XM0088546.1

USB Audio Design Guide 79/110

6.4.5.5 Configuration 1xoxs

This configuration is similar to the configuration above in that it runs in Audio 1.0
over full-speed USB. However, the it is output only (i.e. the input path is disabled
with -DNUM_USB_CHAN_IN=0

6.5 The U-Series Multi-Channel USB Audio Kit

An application of the USB audio framework is provideed specifically for the hard-
ware described in § 2.4 and is implemented on the U-Series dual tile device
(1000MIPS). The application assumes a standard USB B socket (i.e. USB device)
is provided as the USB connectivity method. The related code can be found in
app_usb_aud_u16_audio8.

The design supports 10 channels channels of audio input and output at sample
frequencies up to 192kHz and uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint buffer

· Decoupler

· Audio Driver

· Device Firmware Upgrade (DFU)

· S/PDIF Transmitter

· MIDI

The software layout is the identical to the single tile L-Series Multi-channel Reference
Design and therefore the diagram Figure 37 shows the software arrangement of
the code running on the XS1-U chip.

As with the L-Series, each unit runs in a single core concurrently with the others
units. The lines show the communication between each functional unit.

6.5.1 Clocking and Clock Selection

The XA-SK-AUDIO8 double-slot slice includes two options for master clock genera-
tion:

· A single oscillator with a Phaselink PLL to generate fixed 24.576MHz and
22.5792MHz master-clocks

· A Cirrus Logic CS2100 clock multiplier allowing the master clock to be generated
from a XCore derived reference.

XM0088546.1

USB Audio Design Guide 80/110

The master clock source is controlled by a mux which, in turn, is controlled by bit
1 of PORT 4D:

Value Source

0 Master clock is sourced from PhaseLink PLL

1 Master clock is source from Cirrus Clock Multiplier

Figure 38:

Master Clock
Source

Selection

The current version of the supplied application only supports the use of the fixed
master-clocks from the PhaseLink part.

The clock-select from the phaselink part is controlled via bit 2 of PORT 4E:

Value Frequency

0 24.576MHz

1 22.579MHz

Figure 39:

Master Clock
Frequency

Select

6.5.2 DAC and ADC Configuration

The board is equipped with a single multi-channel audio DAC (Cirrus Logic CS4384)
and a single multi-channel ADC (Cirrus Logic CS5368) giving 8 channels of analogue
output and 8 channels of analogue input.

Configuration of both the DAC and ADC takes place using I2C. The design uses
the I2C component sc_i2c29.

The reset lines of the DAC and ADC are connected to bits 0 and 1 of PORT 4E
respectively.

6.5.3 AudioHwInit()

The AudioHwInit() function is implemented to perform the following:

· Initialise the I2C master software module

· Puts the audio hardware into reset

· Enables the power to the audio hardware

· Select the PhaseLink PLL as the audio master clock source.

6.5.4 AudioHwConfig()

The AudioHwConfig() function is called on every sample frequency change.

29http://www.github.com/xcore/sc_i2c

XM0088546.1

http://www.github.com/xcore/sc_i2c

USB Audio Design Guide 81/110

The AudioHwConfig() function first puts the both the DAC and ADC into reset by
setting P4E[0] and P4E[1] low. It then selects the required master clock and keeps
both the DAC and ADC in reset for a period in order allow the clocks to stabilize.

The DAC and ADC are brought out of reset by setting P4E[0] and P4E[1] back high.

Various registers are then written to the ADC and DAC as required.

6.5.5 Validated Build Options

The reference design can be built in several ways by changing the build options.
These are described in §7.1.

The design has only been fully validated against the build options as set in the
application as distributed. See §5.3 for details and binary naming scheme.

These fully validated build configurations are listed below. In practise, due to the
similarities between the U-Series and L-Series feature set, it is fully expected that
all listed U-Series configurations will operate as expected on the L-Series and vice
versa.

6.5.5.1 Configuration 2ioxs

This configuration runs in high-speed Audio Class 2.0 mode, has the mixer core is
enabled (for volume processing only, supports 10 channels in, 10 channels out,
supports sample rates up to 192kHz and S/PDIF transmit.

6.6 The xCORE-200 Multi-Channel Audio Board

An application of the USB audio framework is provided specifically for the hardware
described in §2.1 and is implemented on an xCORE-200-series dual tile device. The
related code can be found in app_usb_aud_xk_216_mc.

The design supports upto 10 channels of analogue audio input/output at sample-
rates up to 192kHz assuming the use of I2S. This can be further increased by
utilising TDM.

The design uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

· Endpoint buffer

· Decoupler

· Audio Driver

· Device Firmware Upgrade (DFU)

XM0088546.1

USB Audio Design Guide 82/110

· S/PDIF Transmitter

· MIDI

The software layout is the identical to the dual tile L-Series Multi-channel Reference
Design and therefore the diagram Figure 37 shows the software arrangement of
the code running on the xCORE-200 device.

As with the L/U-Series, each unit runs in a single core concurrently with the others
units. The lines show the communication between each functional unit.

6.6.1 Clocking and Clock Selection

The board includes two options for master clock generation:

· A single oscillator with a Phaselink PLL to generate fixed 24.576MHz and
22.5792MHz master-clocks

· A Cirrus Logic CS2100 clock multiplier allowing the master clock to be generated
from a XCore derived reference.

The master clock source is controlled by a mux which, in turn, is controlled by bit
5 of PORT 8C:

Value Source

0 Master clock is sourced from PhaseLink PLL

1 Master clock is source from Cirrus Clock Multiplier

Figure 40:

Master Clock
Source

Selection

The clock-select from the phaselink part is controlled via bit 7 of PORT 8C:

Value Frequency

0 24.576MHz

1 22.579MHz

Figure 41:

Master Clock
Frequency

Select

6.6.2 DAC and ADC Configuration

The board is equipped with a single multi-channel audio DAC (Cirrus Logic CS4384)
and a single multi-channel ADC (Cirrus Logic CS5368) giving 8 channels of analogue
output and 8 channels of analogue input.

Configuration of both the DAC and ADC takes place using I2C. The design uses
the I2C component sc_i2c30.

The reset lines of the DAC and ADC are connected to bits 1 and 6 of PORT 8C
respectively.

30http://www.github.com/xcore/sc_i2c

XM0088546.1

http://www.github.com/xcore/sc_i2c

USB Audio Design Guide 83/110

6.6.3 AudioHwInit()

The AudioHwInit() function is implemented to perform the following:

· Initialise the I2C master software module

· Puts the audio hardware into reset

· Enables the power to the audio hardware

· Select the PhaseLink PLL as the audio master clock source.

6.6.4 AudioHwConfig()

The AudioHwConfig() function is called on every sample frequency change.

The AudioHwConfig() function first puts the both the DAC and ADC into reset by
setting P8C[1] and P8C[6] low. It then selects the required master clock and keeps
both the DAC and ADC in reset for a period in order allow the clocks to stabilize.

The DAC and ADC are brought out of reset by setting P8C[1] and P8C[6] back high.

Various registers are then written to the ADC and DAC as required.

XM0088546.1

USB Audio Design Guide 84/110

6.6.5 Validated Build Options

The reference design can be built in several ways by changing the build options.
These are described in §7.1.

The design has only been fully validated against the build options as set in the
application as distributed in the Makefile. See §5.3 for details and binary naming
scheme.

These fully validated build configurations are enumerated in the supplied Makefile

In practise, due to the similarities between the U/L/xCORE-200 Series feature set,
it is fully expected that all listed U-Series configurations will operate as expected
on the L-Series and vice versa.

The build configuration naming scheme employed in the makefile is as follows:

Feature Option 1 Option 2

Audio Class 1 2

Input enabled: i (channel count) disabled: x

Output enabled: i (channel count) disabled: x

MIDI enabled: m disabled: x

SPDIF output enabled: s disabled: x

SPDIF input enabled: s disabled: x

ADAT output enabled: a disabled: x

ADAT input enabled: a disabled: x

DSD output enabled: d disabled: x

Figure 42:

Build config
naming
scheme

e.g. A build config named 2i10o10xsxxx would signify: Audio class 2.0, input and
output enabled (10 channels each), no MIDI SPDIF output, no SPDIF input, no ADAT
or DSD

In addition to this the terms tdm or slave may be appended to the build configura-
tion name to indicate the I2S mode employed.

6.7 The xCORE-200 Array Microphone Board

An application of the USB audio framework is provided specifically for the hardware
described in §2.2 and is implemented on an xCORE-200-series dual tile device. The
related code can be found in app_usb_aud_array_mic.

The design supports upto 2 channels of analogue audio output at sample-rates from
the on-board DAC. The design also supports input from the 7 PDM microphones.

The design uses the following components:

· XMOS USB Device Driver (XUD)

· Endpoint 0

XM0088546.1

USB Audio Design Guide 85/110

· Endpoint buffer

· Decoupler

· Audio Driver

· Device Firmware Upgrade (DFU)

· PDM Microphone integration

The software layout is the identical to the dual tile L-Series Multi-channel Reference
Design and therefore the diagram Figure 37 shows the software arrangement of
the code running on the xCORE-200 device.

As with the L/U-Series, each unit runs in a single core concurrently with the others
units. The lines show the communication between each functional unit.

The provided application also includes an example of basic microphone data
processing.

6.7.1 Clocking and Clock Selection

The board includes an external fractional-N clock multiplier (Cirrus Logic CS2100)
for audio clock generation.

This allows the audio master clock to be generated from an reference clock provided
by the xCORE, optionally derived from some external source e.g. an incoming
digital steam.

This functionality is primarily included on the board to allow for Ethernet AVB,
where syncing to an external clock is required. In the USB audio design the IC is
simply used for static master clock generation.

The system wide audio master-clock is connected to the AUX output of the CS2100
part. By default, without configuration, the CS2100 part outputs the 24.576MHz
REF input to this output.

The clock multiply ratio is programmed into the CS2100 via the I2C bus.

By default a core is used to drive a fixed reference to the CS2100 part using a timer
and port I/O. Since this I/O is located on a 4-bit port it cannot be directly output
from a clock-block (which would save a core).

In order to reduce core count the following could be done:

· Move the I/O to a 1-bit port and drive the clock directly from a clock-block

· Combine this (computationally simple) task into another task

· Use a clocking methodology that does not require this REF signal as previously
explained, it is unlikely the clocking methodology would be employed in a
production environment if locking to an external clock is not required.

XM0088546.1

USB Audio Design Guide 86/110

6.7.2 DAC Configuration

The board is equipped with a single stereo audio DAC with integrated headphone
amplifier (Cirrus Logic CS43L21)

Configuration of both the DAC takes place using I2C. The design uses the I2C
component sc_i2c31.

The reset lines of the DAC is connected to bits 0 PORT 4F.

6.7.3 AudioHwInit()

The AudioHwInit() function is called on power up and is implemented to perform
the following:

· Puts the DAC into reset

· Initialise the I2C master software module

· Initialises the CS2100 part over I2C

· Configures the CS2100 part to output a ratio for a suitable initial master clock
frequency (DEFAULT_MCLK_FREQ)

6.7.4 AudioHwConfig()

The AudioHwConfig() function is called on every sample frequency change.

The AudioHwConfig() function first puts the both the DAC/headphone-amp and
into reset by writing to PORT 4F.

It then sets the required ratio in the CS2100 via I2C based on the mClk parameter.
After a delay, in order to allow the master clock from the CS2100 to settle the DAC
is take out of reset. The DAC is then configured via I2C, this primarily involves
switching the DAC into I2S slave mode

6.7.5 Mic Processing Example

The provided application includes a basic example of processing the data
from the PDM microphones. This basic processing example is located in
user_pdm_process(). It takes a block of PCM microphone samples as an input and
writes processed samples into the output array parameter.

The processing involves applying a simple gain globally to all of the microphones.
Normal operation sees this gain applied to the data from the 7 microphones and
then written to output[0-6]. The gain is increased and decreased by pressing
buttons B and C respectively.

31http://www.github.com/xcore/sc_i2c

XM0088546.1

http://www.github.com/xcore/sc_i2c

USB Audio Design Guide 87/110

The example also provides a simple summing example, where all 7 microphones
are summed into output[0] with the original microphone signals output to
output[1..7]. This functionality is enabled and disabled using Button A.

6.7.6 Validated Build Options

The reference design can be built in several ways by changing the build options.
These are described in §7.1.

The design has only been fully validated against the build options as set in the
application as distributed in the Makefile. See §5.3 for details and binary naming
schemes.

These fully validated build configurations are enumerated in the supplied Makefile

In practise, due to the similarities between the U/L/xCORE-200 Series feature set,
it is fully expected that all listed U-Series configurations will operate as expected
on the L-Series and vice versa.

The build configuration naming scheme employed in the makefile is as follows:

Feature Option 1 Option 2

Audio Class 1 2

Input enabled: i (channel count) disabled: x

Output enabled: i (channel count) disabled: x

Figure 43:

Build config
naming
scheme

e.g. A build config named 2i8o2 would signify: Audio class 2.0, input and output
enabled (8 in, 2 out).

XM0088546.1

7 API

IN THIS CHAPTER

· Configuration Defines

· Required User Function Definitions

· Component API

7.1 Configuration Defines

An application using the USB audio framework needs to have defines set for configuration. Defaults
for these defines are found in module_usb_audio in devicedefines.h.

These defines should be over-ridden in the mandatory customdefines.h file or in Makefile for a
relevant build configuration.

This section fully documents all of the setable defines and their default values (where appropriate).

7.1.1 Code location (tile)

Macro AUDIO_IO_TILE

Description Location (tile) of audio I/O.
Default: 0

Macro XUD_TILE

Description Location (tile) of audio I/O.
Default: 0

Macro IAP_TILE

Description Location (tile) of IAP.
Default: AUDIO_IO_TILE

XM0088546.1

USB Audio Design Guide 89/110

Macro MIDI_TILE

Description Location (tile) of MIDI I/O.
Default: AUDIO_IO_TILE

7.1.2 Channel Counts

Macro NUM_USB_CHAN_OUT

Description Number of output channels (host to device).
Default: NONE (Must be defined by app)

Macro NUM_USB_CHAN_IN

Description Number of input channels (device to host).
Default: NONE (Must be defined by app)

Macro DSD_CHANS_DAC

Description Number of DSD output channels.
Default: 0 (disabled)

Macro I2S_CHANS_DAC

Description Number of IS2 channesl to DAC/CODEC.
Must be a multiple of 2.
Default: NONE (Must be defined by app)

Macro I2S_CHANS_ADC

Description Number of I2S channels from ADC/CODEC.
Must be a multiple of 2.
Default: NONE (Must be defined by app)

7.1.3 Frequencies and Clocks

XM0088546.1

USB Audio Design Guide 90/110

Macro MAX_FREQ

Description Max supported sample frequency for device (Hz).
Default: 192000

Macro MIN_FREQ

Description Min supported sample frequency for device (Hz).
Default 44100

Macro DEFAULT_FREQ

Description Default device sample frequency.
A safe default should be used. Default: MIN_FREQ

Macro MCLK_441

Description Master clock defines for 44100 rates (in Hz).
Default: NONE (Must be defined by app)

Macro MCLK_48

Description Master clock defines for 48000 rates (in Hz).
Default: NONE (Must be defined by app)

7.1.4 Audio Class

Macro AUDIO_CLASS

Description USB Audio Class Version.
Default: 2 (Audio Class version 2.0)

Macro AUDIO_CLASS_FALLBACK

Description Whether or not to fall back to Audio Class 1.0 in USB Full-speed.
Default: 0 (Disabled)

XM0088546.1

USB Audio Design Guide 91/110

Macro FULL_SPEED_AUDIO_2

Description Whether or not to run UAC2 in full-speed.
When disabled device can either operate in UAC1 mode in full-speed (if AU-
DIO_CLASS_FALLBACK enabled) or return “null” descriptors.
Default: 1 (Enabled) when AUDIO_CLASS_FALLBACK disabled.

7.1.5 System Feature Configuration

7.1.5.1 MIDI

Macro MIDI

Description Enable MIDI functionality including buffering, descriptors etc.
Default: DISABLED

Macro MIDI_RX_PORT_WIDTH

Description MIDI Rx port width (1 or 4bit).
Default: 1

7.1.5.2 S/PDIF

Macro SPDIF_TX

Description Enables SPDIF Tx.
Default: 0 (Disabled)

Macro SPDIF_TX_INDEX

Description Defines which output channels (stereo) should be output on S/PDIF.
Note, Output channels indexed from 0.
Default: 0 (i.e. channels 0 & 1)

Macro SPDIF_RX

Description Enables SPDIF Rx.
Default: 0 (Disabled)

XM0088546.1

USB Audio Design Guide 92/110

Macro SPDIF_RX_INDEX

Description S/PDIF Rx first channel index, defines which channels S/PDIF will be input on.
Note, indexed from 0.
Default: NONE (Must be defined by app when SPDIF_RX enabled)

7.1.5.3 ADAT

Macro ADAT_RX

Description Enables ADAT Rx.
Default: 0 (Disabled)

Macro ADAT_RX_INDEX

Description ADAT Rx first channel index.
defines which channels ADAT will be input on. Note, indexed from 0.
Default: NONE (Must be defined by app when ADAT_RX enabled)

7.1.5.4 PDM Microphones

Macro NUM_PDM_MICS

Description Number of PDM microphones in the design.
Default: None

7.1.5.5 DFU

Macro DFU

Description Enable DFU functionality.
A driver required for Windows operation.
Default: 1 (Enabled)

7.1.5.6 HID

XM0088546.1

USB Audio Design Guide 93/110

Macro HID_CONTROLS

Description Enable HID playback controls functionality.
1 for enabled, 0 for disabled.
Default 0 (Disabled)

7.1.5.7 CODEC Interface

Macro CODEC_MASTER

Description

7.1.6 USB Device Configuration

Macro VENDOR_STR

Description Vendor String used by the device.
This is also pre-pended to various strings used by the design.
Default: “XMOS”

Macro VENDOR_ID

Description USB Vendor ID (or VID) as assigned by the USB-IF.
Default: 0x20B1 (XMOS)

Macro PRODUCT_STR

Description USB Product String for the device.
If defined will be used for both PRODUCT_STR_A2 and PRODUCT_STR_A1
Default: Undefined

Macro PRODUCT_STR_A2

Description Product string for Audio Class 2.0 mode.
Default: “xCore USB Audio 2.0”

XM0088546.1

USB Audio Design Guide 94/110

Macro PRODUCT_STR_A1

Description Product string for Audio Class 1.0 mode.
Default: “xCore USB Audio 1.0”

Macro PID_AUDIO_1

Description USB Product ID (PID) for Audio Class 1.0 mode.
Only required if AUDIO_CLASS == 1 or AUDIO_CLASS_FALLBACK is enabled.
Default: 0x0003

Macro PID_AUDIO_2

Description USB Product ID (PID) for Audio Class 2.0 mode.
Default: 0x0002

Macro BCD_DEVICE

Description Device firmware version number in Binary Coded Decimal format: 0xJJMN where
JJ: major, M: minor, N: sub-minor version number.
NOTE: User code should not modify this but should modify BCD_DEVICE_J,
BCD_DEVICE_M, BCD_DEVICE_N instead
Default: XMOS USB Audio Release version (e.g. 0x0651 for 6.5.1).

7.1.7 Stream Formats

7.1.7.1 Output/Playback

Macro OUTPUT_FORMAT_COUNT

Description Number of supported output stream formats.
Values 1,2,3 supported
Default: 2

Macro STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS

Continued on next page

XM0088546.1

USB Audio Design Guide 95/110

Description Sample resolution (bits) of output stream Alternate 1.
Default: 24 if Alternate 1 is PCM, else 32 if DSD/RAW
Note, 24 on the lowests alt in case of OUTPUT_FORMAT_COUNT = 1 leaving
24bit as the designs default resolution.

Macro STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS

Description Sample resolution (bits) of output stream Alternate 2.
Default: 16 if Alternate 2 is PCM, else 32 if DSD/RAW

Macro STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS

Description Sample resolution (bits) of output stream Alternate 3.
Default: 32 if Alternate 2 is PCM, else 32 if DSD/RAW

Macro HS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES

Description Sample sub-slot size (bytes) of output stream Alternate 1 when running in
high-speed.
Default: 4 if resolution for Alternate 1 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer
for our 32-bit machine. Typically do not care about this extra bus overhead at
High-speed

Macro HS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES

Description Sample sub-slot size (bytes) of output stream Alternate 2 when running in
high-speed.
Default: 4 if resolution for Alternate 2 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer
for our 32-bit machine. Typically do not care about this extra bus overhead at
High-speed

Macro HS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES

Continued on next page

XM0088546.1

USB Audio Design Guide 96/110

Description Sample sub-slot size (bytes) of output stream Alternate 3 when running in
high-speed.
Default: 4 if resolution for Alternate 3 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer
for our 32-bit machine. Typically do not care about this extra bus overhead at
High-speed

Macro FS_STREAM_FORMAT_OUTPUT_1_SUBSLOT_BYTES

Description Sample sub-slot size (bytes) of output stream Alternate 1 when running in
full-speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_OUTPUT_1_RESOLUTION_BITS / 8

Macro FS_STREAM_FORMAT_OUTPUT_2_SUBSLOT_BYTES

Description Sample sub-slot size (bytes) of output stream Alternate 2 when running in
full-speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_OUTPUT_2_RESOLUTION_BITS / 8

Macro FS_STREAM_FORMAT_OUTPUT_3_SUBSLOT_BYTES

Description Sample sub-slot size (bytes) of output stream Alternate 3 when running in
full-speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_OUTPUT_3_RESOLUTION_BITS / 8

Macro STREAM_FORMAT_OUTPUT_1_DATAFORMAT

Description Sample audio data-format if output stream Alternate 1.
Default: UAC_FORMAT_TYPEI_RAW_DATA when Alternate 1 is RAW/DSD else
UAC_FORMAT_TYPEI_PCM

XM0088546.1

USB Audio Design Guide 97/110

Macro STREAM_FORMAT_OUTPUT_2_DATAFORMAT

Description Sample audio data-format if output stream Alternate 2.
Default: UAC_FORMAT_TYPEI_RAW_DATA when Alternate 2 is RAW/DSD else
UAC_FORMAT_TYPEI_PCM

Macro STREAM_FORMAT_OUTPUT_3_DATAFORMAT

Description Sample audio data-format if output stream Alternate 3.
Default: UAC_FORMAT_TYPEI_RAW_DATA when Alternate 3 is RAW/DSD else
UAC_FORMAT_TYPEI_PCM

7.1.7.2 Input/Recording

Macro INPUT_FORMAT_COUNT

Description Number of supported input stream formats.
Default: 1

Macro STREAM_FORMAT_INPUT_1_RESOLUTION_BITS

Description Sample resolution (bits) of input stream Alternate 1.
Default: 24

Macro HS_STREAM_FORMAT_INPUT_1_SUBSLOT_BYTES

Description Sample sub-slot size (bytes) of input stream Alternate 1 when running in high-
speed.
Default: 4 if resolution for Alternate 1 is 24bits, else resolution / 8
Note, the default catchs the 24bit special case where 4-byte subslot is nicer
for our 32-bit machine. Typically do not care about this extra bus overhead at
High-speed

Macro FS_STREAM_FORMAT_INPUT_1_SUBSLOT_BYTES

Continued on next page

XM0088546.1

USB Audio Design Guide 98/110

Description Sample sub-slot size (bytes) of input stream Alternate 1 when running in full-
speed.
Note, in full-speed mode bus bandwidth is at a premium, therefore pack samples
into smallest possible sub-slot.
Default: STREAM_FORMAT_INPUT_1_RESOLUTION_BITS / 8

Macro STREAM_FORMAT_INPUT_1_DATAFORMAT

Description Sample audio data-format for input stream Alternate 1.
Default: UAC_FORMAT_TYPEI_PCM

7.1.8 Volume Control

Macro OUTPUT_VOLUME_CONTROL

Description Enable/disable output volume control including all processing and descriptor
support.
Default: 1 (Enabled)

Macro INPUT_VOLUME_CONTROL

Description Enable/disable input volume control including all processing and descriptor
support.
Default: 1 (Enabled)

Macro MIN_VOLUME

Description The minimum volume setting above -inf.
This is a signed 8.8 fixed point number that must be strictly greater than -128
(0x8000)
Default: 0x8100 (-127db)

Macro MAX_VOLUME

Description The maximum volume setting.
This is a signed 8.8 fixed point number.
Default: 0x0000 (0db)

XM0088546.1

USB Audio Design Guide 99/110

Macro VOLUME_RES

Description The resolution of the volume control in db as a 8.8 fixed point number.
Default: 0x100 (1db)

7.1.9 Mixing Parameters

Macro MIXER

Description Enable “mixer” core.
Default: 0 (Disabled)

Macro MAX_MIX_COUNT

Description Number of seperate mixes to perform.
Default: 8 if MIXER enabled, else 0

Macro MIX_INPUTS

Description Number of channels input into the mixer.
Note, total number of mixer nodes is MIX_INPUTS * MAX_MIX_COUNT
Default: 18

Macro MIN_MIXER_VOLUME

Description The minimum volume setting for the mixer unit above -inf.
This is a signed 8.8 fixed point number that must be strictly greater than -128
(0x8000)
Default: 0x8100 (-127db)

Macro MAX_MIXER_VOLUME

Description The maximum volume setting for the mixer.
This is a signed 8.8 fixed point number.
Default: 0x0000 (0db)

XM0088546.1

USB Audio Design Guide 100/110

Macro VOLUME_RES_MIXER

Description The resolution of the volume control in db as a 8.8 fixed point number.
Default: 0x100 (1db)

7.1.10 Power

Macro SELF_POWERED

Description Report as self to the host when enabled, else reports as bus-powered.
This affects descriptors and XUD usage.
Default: 0 (Disabled)

Macro BMAX_POWER

Description Power drawn from the host (in mA x 2).
Default: 0 when SELF_POWERED enabled else 250 (500mA)

7.2 Required User Function Definitions

The following functions need to be defined by an application using the XMOS USB Audio framework.

7.2.1 External Audio Hardware Configuration Functions

Function AudioHwInit

Description This function is called when the audio core starts after the device boots up and
should initialize the external audio harware e.g. clocking, DAC, ADC etc

Type void AudioHwInit(chanend ?c_codec)

Parameters c_codec An optional chanend that was original passed into audio() that
can be used to communicate with other cores.

Function AudioHwConfig

Description This function is called when the audio core starts or changes sample rate. It
should configure the extenal audio hardware to run at the specified sample rate
given the supplied master clock frequency.

Continued on next page

XM0088546.1

USB Audio Design Guide 101/110

Type void AudioHwConfig(unsigned samFreq,
unsigned mclk,
chanend ?c_codec,
unsigned dsdMode,
unsigned sampRes_DAC,
unsigned sampRes_ADC)

Parameters samFreq The sample frequency in Hz that the hardware should be config-
ured to (in Hz).

mclk The master clock frequency that is required in Hz.

c_codec An optional chanend that was original passed into audio() that
can be used to communicate with other cores.

dsdMode Signifies if the audio hardware should be configured for DSD
operation

sampRes_DAC The sample resolution of the DAC stream

sampRes_ADC The sample resolution of the ADC stream

7.2.2 Audio Streaming Functions

The following functions can be optionally used by the design. They can be useful for mute lines
etc.

Function AudioStreamStart

Description This function is called when the audio stream from device to host starts.

Type void AudioStreamStart(void)

Function AudioStreamStop

Description This function is called when the audio stream from device to host stops.

Type void AudioStreamStop(void)

7.2.3 Host Active

The following function can be used to signal that the device is connected to a valid host.

XM0088546.1

USB Audio Design Guide 102/110

This is called on a change in state.

Function AudioStreamStart

Description

Type void AudioStreamStart(int active)

Parameters active Indicates if the host is active or not. 1 for active else 0.

7.2.4 HID Controls

The following function is called when the device wishes to read physical user input (buttons etc).

Function UserReadHIDButtons

Description

Type void
UserReadHIDButtons(unsigned char hidData[])

Parameters hidData The function should write relevant HID bits into this array. The
bit ordering and functionality is defined by the HID report de-
scriptor used.

7.3 Component API

The following functions can be called from the top level main of an application and implement the
various components described in §3.1.

Function XUD_Manager

Description This performs the low-level USB I/O operations.
Note that this needs to run in a thread with at least 80 MIPS worst case execution
speed.

Continued on next page

XM0088546.1

USB Audio Design Guide 103/110

Type int XUD_Manager(chanend c_epOut[],
int noEpOut,
chanend c_epIn[],
int noEpIn,
chanend ?c_sof,
XUD_EpType epTypeTableOut[],
XUD_EpType epTypeTableIn[],
out port ?p_usb_rst,
clock ?clk,
unsigned rstMask,
XUD_BusSpeed_t desiredSpeed,
XUD_PwrConfig pwrConfig)

Continued on next page

XM0088546.1

USB Audio Design Guide 104/110

Parameters c_epOut An array of channel ends, one channel end per output endpoint
(USB OUT transaction); this includes a channel to obtain requests
on Endpoint 0.

noEpOut The number of output endpoints, should be at least 1 (for End-
point 0).

c_epIn An array of channel ends, one channel end per input endpoint
(USB IN transaction); this includes a channel to respond to re-
quests on Endpoint 0.

noEpIn The number of input endpoints, should be at least 1 (for End-
point 0).

c_sof A channel to receive SOF tokens on. This channel must be
connected to a process that can receive a token once every 125
ms. If tokens are not read, the USB layer will lock up. If no SOF
tokens are required null should be used for this parameter.

epTypeTableOut
See epTypeTableIn.

epTypeTableIn
This and epTypeTableOut are two arrays indicating the type of
the endpoint. Legal types include: XUD_EPTYPE_CTL (Endpoint 0),
XUD_EPTYPE_BUL (Bulk endpoint), XUD_EPTYPE_ISO (Isochronous
endpoint), XUD_EPTYPE_INT (Interrupt endpoint), XUD_EPTYPE_DIS
(Endpoint not used). The first array contains the endpoint types
for each of the OUT endpoints, the second array contains the
endpoint types for each of the IN endpoints.

p_usb_rst The port to used to connect to an external phy reset line. Should
be null for U-Series.

clk The clock block to use for the p_usb_rst port - this should not
be clock block 0. Should be null for U-Series.

rstMask The mask to use when taking an external phy into/out of reset.
The mask is ORed into the port to disable reset, and unset when
deasserting reset. Use ‘-1’ as a default mask if this port is not
shared.

desiredSpeed
This parameter specifies what speed the device will attempt
to run at i.e. full-speed (ie 12Mbps) or high-speed (480Mbps)
if supported by the host. Pass XUD_SPEED_HS if high-speed is
desired or XUD_SPEED_FS if not. Low speed USB is not supported
by XUD.

pwrConfig Specifies whether the device is bus or self-powered. When self-
powered the XUD will monitor the VBUS line for host disconnec-
tions. This is required for compliance reasons. Valid values are
XUD_PWR_SELF and XUD_PWR_BUS.

Continued on next page

XM0088546.1

USB Audio Design Guide 105/110

When using the USB audio framework the c_ep_in array is always composed in the following order:

· Endpoint 0 (in)

· Audio Feedback endpoint (if output enabled)

· Audio IN endpoint (if input enabled)

· MIDI IN endpoint (if MIDI enabled)

· Clock Interrupt endpoint

The array c_ep_out is always composed in the following order:

· Endpoint 0 (out)

· Audio OUT endpoint (if output enabled)

· MIDI OUT endpoint (if MIDI enabled)

Function Endpoint0

Description Function implementing Endpoint 0 for enumeration, control and configuration
of USB audio devices.
It uses the descriptors defined in descriptors_2.h.

Type void Endpoint0(chanend c_ep0_out,
chanend c_ep0_in,
chanend c_audioCtrl,
chanend ?c_mix_ctl,
chanend ?c_clk_ctl,
chanend ?c_EANativeTransport_ctr,
client interface i_dfu dfuInterface)

Continued on next page

XM0088546.1

USB Audio Design Guide 106/110

Parameters c_ep0_out Chanend connected to the XUD_Manager() out endpoint array

c_ep0_in Chanend connected to the XUD_Manager() in endpoint array

c_audioCtrl Chanend connected to the decouple thread for control audio
(sample rate changes etc.)

c_mix_ctl Optional chanend to be connected to the mixer thread if present

c_clk_ctl Optional chanend to be connected to the clockgen thread if
present.

c_usb_test Optional chanend to be connected to XUD if test modes required.

c_EANativeTransport_ctrl
Optional chanend to be connected to EA Native endpoint man-
ager if present

Function buffer

Description USB Audio Buffering Thread.
This function buffers USB audio data between the XUD layer and the decouple
thread. Most of the chanend parameters to the function should be connected
to XUD_Manager()

Type void buffer(chanend c_aud_out,
chanend c_aud_in,
chanend c_aud_fb,
chanend c_sof,
chanend c_aud_ctl,
in port p_off_mclk)

Continued on next page

XM0088546.1

USB Audio Design Guide 107/110

Parameters c_aud_out Audio OUT endpoint channel connected to the XUD

c_aud_in Audio IN endpoint channel connected to the XUD

c_aud_fb Audio feedback endpoint channel connected to the XUD

c_midi_from_host
MIDI OUT endpoint channel connected to the XUD

c_midi_to_host
MIDI IN endpoint channel connected to the XUD

c_int Audio clocking interrupt endpoint channel connected to the XUD

c_clk_int Optional chanend connected to the clockGen() thread if present

c_sof Start of frame channel connected to the XUD

c_aud_ctl Audio control channel connected to Endpoint0()

p_off_mclk A port that is clocked of the MCLK input (not the MCLK input
itself)

Function decouple

Description Manage the data transfer between the USB audio buffer and the Audio I/O
driver.

Type void decouple(chanend c_audio_out)

Parameters c_audio_out Channel connected to the audio() or mixer() threads

Function mixer

Description Digital sample mixer.
This thread mixes audio streams between the decouple() thread and the audio()
thread.

Type void mixer(chanend c_to_host, chanend c_to_audio, chanend c_mix_ctl)

Continued on next page

XM0088546.1

USB Audio Design Guide 108/110

Parameters c_to_host a chanend connected to the decouple() thread for receiving/-
transmitting samples

c_to_audio a chanend connected to the audio() thread for receiving/trans-
mitting samples

c_mix_ctl a chanend connected to the Endpoint0() thread for receiving
control commands

Function audio

Description The audio driver thread.
This function drives I2S ports and handles samples to/from other digital I/O
threads.

Type void audio(chanend c_in, chanend ?c_config, chanend ?c_adc)

Parameters c_in Audio sample channel connected to the mixer() thread or the
decouple() thread

c_dig channel connected to the clockGen() thread for receiving/trans-
mitting samples

c_config An optional channel that will be passed on to the CODEC config-
uration functions.

Function clockGen

Description Clock generation and digital audio I/O handling.

Type void
clockGen(streaming chanend ?c_spdif_rx,

chanend ?c_adat_rx,
out port p,
chanend c_audio,
chanend c_clk_ctl,
chanend c_clk_int)

Continued on next page

XM0088546.1

USB Audio Design Guide 109/110

Parameters c_spdif_rx channel connected to S/PDIF receive thread

c_adat_rx channel connect to ADAT receive thread

p port to output clock signal to drive external frequency synthe-
sizer

c_audio channel connected to the audio() thread

c_clk_ctl channel connected to Endpoint0() for configuration of the clock

c_clk_int channel connected to the decouple() thread for clock interrupts

Function SpdifReceive

Description S/PDIF receive function.
This function needs 1 thread and no memory other than ~2800 bytes of program
code. It can do 11025, 12000, 22050, 24000, 44100, 48000, 88200, 96000,
and 192000 Hz. When the decoder encounters a long series of zeros it will
lower the divider; when it encounters a short series of 0-1 transitions it will
increase the divider.
Output: the received 24-bit sample values are output as a word on the streaming
channel end. Each value is shifted up by 4-bits with the bottom four bits
being one of FRAME_X, FRAME_Y, or FRAME_Z. The bottom four bits should be
removed whereupon the sample value should be sign extended.
The function does not return unless compiled with TEST defined in which case
it returns any time that it loses synchronisation.

Type void SpdifReceive(in buffered port:4 p,
streaming chanend c,
int initial_divider,
clock clk)

Parameters p S/PDIF input port. This port must be 4-bit buffered, declared as
in buffered port:4

c channel to output samples to

initial_divider
initial divide for initial estimate of sample rate For a 100Mhz
reference clock, use an initial divider of 1 for 192000, 2 for
96000/88200, and 4 for 48000/44100.

clk clock block sourced from the 100 MHz reference clock.

XM0088546.1

USB Audio Design Guide 110/110

Function adatReceiver48000

Description ADAT Receive Thread (48kHz sample rate).
When a data rame is received, samples will be output onto the streaming
channel At first a word 0x000000Z1 will be output, where Z are the user data;
after that eight words 0x0ZZZZZZ0 will be output where ZZZZZZ is a 24-bit
sample value. The eight words may refer to sample values on eight channels,
or on fewer channels if muxing is used.
The function will return if it cannot lock onto a 48,000 Hz signal. Normally the
48000 function is called in a while(1) loop. If both 44,100 and 48,000 need to
be supported, they should be called in sequence in a while(1) loop. Note that
the functions are large, and that 44,100 should not be called if 44.1 KHz does
not need to be supported.

Type void
adatReceiver48000(buffered in port:32 p, chanend oChan)

Parameters p ADAT port - should be 1-bit and clocked at 100MHz

oChan channel on which decoded samples are output

Function adatReceiver44100

Description ADAT Receive Thread (44.1kHz sample rate).
When a data rame is received, samples will be output onto the streaming
channel At first a word 0x000000Z1 will be output, where Z are the user data;
after that eight words 0x0ZZZZZZ0 will be output where ZZZZZZ is a 24-bit
sample value. The eight words may refer to sample values on eight channels,
or on fewer channels if muxing is used.
The function will return if it cannot lock onto a 44,100 Hz signal. Normally the
44,100 function is called in a while(1) loop. If both 44,100 and 48,000 need to
be supported, they should be called in sequence in a while(1) loop. Note that
the functions are large, and that 48,000 should not be called if 48 Khz does
not need to be supported.

Type void
adatReceiver44100(buffered in port:32 p, chanend oChan)

Parameters p ADAT port - should be 1-bit and clocked at 100MHz

oChan channel on which decoded samples are output

XM0088546.1

USB Audio Design Guide 111/110

Function usb_midi

Description USB MIDI I/O thread.
This function passes MIDI data from USB to UART I/O.

Type void
usb_midi(buffered in port:1 ?p_midi_in,

port ?p_midi_out,
clock ?clk_midi,
chanend ?c_midi,
unsigned cable_number,
chanend ?c_iap,
chanend ?c_i2c,
port ?p_scl,
port ?p_sda)

Parameters p_midi_in 1-bit input port for MIDI

p_midi_out 1-bit output port for MIDI

clk_midi clock block used for clockin the UART; should have a rate of
100MHz

c_midi chanend connected to the decouple() thread

cable_number
the cable number of the MIDI implementation. This should be
set to 0.

XM0088546.1

USB Audio Design Guide 112/110

8 Frequently Asked Questions

Why does the USBView tool from Microsoft show errors in the devices descrip-
tors?

The USBView tool supports USB Audio Class 1.0 only

How do I set the maximum sample rate of the device?

See MAX_FREQ define in usb_audio_sec_custom_defines_api

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

XM0088546.1

	Overview
	Hardware Platforms
	xCORE-200 Multi-Channel Audio Board
	Analogue Input & Output
	Digital Input & Output
	MIDI
	Audio Clocking
	LEDs, Buttons and Other IO

	xCORE-200 Microphone Array Board
	Microphones
	Analogue Output
	Audio Clocking
	Buttons, LEDs and Other IO

	USB Multi-function Audio (MFA) Kit
	U16 Multi-Channel USB Audio Kit
	USB Audio 2.0 DJ Kit
	USB Audio 2.0 Reference Design Board
	USB Audio 2.0 Multichannel Reference Design Board

	Software Architecture
	The USB Audio System Architecture
	XMOS USB Device (XUD) Library
	Endpoint 0: Management and Control
	Enumeration
	Over-riding Standard Requests
	Class Requests

	Audio Endpoints (Endpoint Buffer and Decoupler)
	Endpoint Buffer
	Decoupler
	Audio Buffering Scheme
	Decoupler/Audio Core interaction

	Audio Driver
	Port Configuration (xCORE Master)
	Changing Audio Sample Frequency

	Digital Mixer
	Control
	Host Control

	S/PDIF Transmit
	Clocking
	Usage
	Output stream structure

	S/PDIF Receive
	Usage and Integration

	ADAT Receive
	Integration

	External Clock Recovery (ClockGen)
	MIDI
	PDM Microphones
	Overview of PDM implemention
	PDM Microphone Hardware Characteristics
	Integration of PDM Microphones into USB Audio

	Resource Usage

	Features & Options
	Device Firmware Upgrade (DFU)
	USB Audio Class Version Support
	Driver Support
	Audio Class 1.0 Mode and Fall-back

	Audio Controls via Human Interface Device (HID)
	Apple MFi compatibility
	Audio Stream Formats
	Audio Subslot
	Audio Sample Resolution
	Audio Format

	DSD over PCM (DoP)

	Programming Guide
	Getting Started
	Building and Running
	Installing the application onto flash

	Project Structure
	Applications and Modules

	Build Configurations
	Validated Build Configurations
	Configuration Naming Scheme
	A USB Audio Application
	Custom Defines
	Configuration Functions
	The main program

	Adding Custom Code
	Example: Changing output format
	Example: Adding DSP to output stream

	USB Audio Applications
	USB Audio 2.0 Reference Design (L-Series) Application
	Port 32A
	Clocking
	HID
	Validated Build Options

	The USB Audio 2.0 DJ Kit (U-Series)
	Clocking and Clock Selection
	CODEC Configuration
	U-Series ADC
	HID Example
	Validated Build Options

	The USB Audio 2.0 Multichannel Reference Design (L-Series) Software
	Clocking
	Validated Build Options

	The Multi-function Audio Kit (U-Series)
	Clocking and Clock Selection
	DAC and ADC Configuration
	U-Series ADC
	HID Example
	Validated Build Options

	The U-Series Multi-Channel USB Audio Kit
	Clocking and Clock Selection
	DAC and ADC Configuration
	AudioHwInit()
	AudioHwConfig()
	Validated Build Options

	The xCORE-200 Multi-Channel Audio Board
	Clocking and Clock Selection
	DAC and ADC Configuration
	AudioHwInit()
	AudioHwConfig()
	Validated Build Options

	The xCORE-200 Array Microphone Board
	Clocking and Clock Selection
	DAC Configuration
	AudioHwInit()
	AudioHwConfig()
	Mic Processing Example
	Validated Build Options

	API
	Configuration Defines
	Code location (tile)
	Channel Counts
	Frequencies and Clocks
	Audio Class
	System Feature Configuration
	USB Device Configuration
	Stream Formats
	Volume Control
	Mixing Parameters
	Power

	Required User Function Definitions
	External Audio Hardware Configuration Functions
	Audio Streaming Functions
	Host Active
	HID Controls

	Component API

	Frequently Asked Questions

