ES7145LV

10-pin, 24-Bit, 192 kHz Stereo D/A Converter for PCM Audio

GENERAL DESCRIPTION

The ES7145LV is a low cost 10-pin stereo digital to analog converter. The ES7145LV can accept left justified serial audio data format up to 24-bit word length. The device uses advanced multi-bit Δ - Σ modulation technique to convert data into two channel analog outputs. The multi-bit Δ - Σ modulator makes the device with very low sensitivity to clock jitter and very low out of band noise.

FEATURES

- 100 dB dynamic range
- -85 dB THD+N
- Up to 200 kHz sampling frequency
- Left justified audio data format, 16-24 bits
- Single power supply 3V to 3.6V

APPLICATIONS

- Digital Photo Frame
- Set top box
- Digital TV
- DVD player
- Audio player

ORDERING INFORMATION

ES7145LV -40°C ~ +85°C

MSOP 10 (TSSOP-10)

BLOCK DIAGRAM

1. PIN DESCRIPTIONS

PIN	PIN	I/O	DESCRIPTION
1	SDATA	I	Serial audio data input
2	SCLK	-	Bit clock input
3	LRCK	I	Left and right channel clock input indicating input data sampling
			rate (Fs) and channel selection
4	CLKIN	-	System clock input
5	CAP1	0	Filtering capacitor
6	CAP2	0	Filtering capacitor
7	AOUTL	0	Analog output of left channel
8	GND	I	Ground
9	VDD	I	Device power supply
10	AOUTR	0	Analog output of right channel

2. RECOMMENDED APPLICATION CIRCUIT

Figure 1 Recommended Application Circuit

3. APPLICATION DESCRIPTIONS

Sampling Rate and Input Clocks

The serial audio input data is transmitted to the device at SDATA pin. According to the sampling rate, the device can work in three speed modes, single speed, double speed and quad speed. The device can detect the speed mode of the input data stream automatically when the sampling rate falls into the auto detection ranges listed in Table1. If the sampling rate is outside the auto detection ranges, the device will not work properly.

MODE	Fs Auto Detection Range	CLKIN/LRCK Ratio	
Single Speed	8kHz – 50kHz	256, 384, 512, 768, 1024	
Double Speed	84kHz – 100kHz	128, 192, 256, 384, 512	
Quad Speed	167kHz – 200kHz	128, 192, 256	

Table 1 Auto Detection Ranges and CLKIN/LRCK Rat	io
--	----

The device works with the input system clock CLKIN, sample data clock LRCK and bit clock SCLK. The data clock and bit clock must be synchronously derived from the system clock with some specific rates. The device only supports the CLKIN/LRCK ratios listed in Table1. The LRCK/SCLK ratio is normally 64. The device detects clock ratios automatically, and it will not work properly if any ratio is incorrect.

Audio Data Input

The ES7145LV can accept left justified serial audio input data from 16-bit to 24-bit. The device can detect the data word length automatically. The relationship of SDATA, SCLK and LRCK for the format is illustrated through Figures 2.

Figure 2 left justified serial audio data format up to 24-bit

Power Up and Power Down

The device resets itself when VDD ramp from ground voltage to supply voltage. The ground voltage needs to be less than 0.2V for proper reset. When VDD voltage is removed, it is important to let it drop below 0.2V before next power up. An optional discharge resistor (3.3K, for example) can be placed between VDD and GND.

Upon applying VDD, the device will reset itself and enter power down state. During this state, the device clamps outputs to ground and power down the device operation except for clock management unit. Once proper CLKIN and LRCK clocks are applied, the device will leave power down state, and the device outputs ramp from ground to common mode voltage softly. Then the device enters the normal operation.

4. ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

At or beyond this condition, operating continuously may cause permanent damage to the device. The performance and functions of the device are not guaranteed at these extremes.

PARAMETER	MIN	MAX
Supply Voltage Level	-0.3V	+5.5V
Input Voltage Range	GND-0.3V	VDD+0.3V
Operating Temperature Range	-40°C	+85°C
Storage Temperature	-65°C	+150°C

Recommended Operating Conditions

PARAMETER	MIN	ТҮР	MAX	UNIT
Supply Voltage Level	3	3.3	5.5	V

Analog Characteristics

Test conditions: VDD=3.3V, GND=0V, ambient temperature=25°C, Fs=48KHz, CLKIN/LRCK=256, input 0dB 1KHz sinewave

PARAMETER	MIN	ТҮР	MAX	UNIT			
DAC Performance							
Dynamic Range (Note 1)	90	100		dB			
THD+N		-85	-80	dB			
Channel Separation (1KHz)		100		dB			
Signal to Noise Ratio		100		dB			
Interchannel Gain Mismatch		0		dB			
Frequency Response	-0.02		+0.08	dB			
(20Hz-20KHz)							
Filter Frequency Response characteristics							
Single Speed							
Passband	0		0.454	Fs			
Stopband	0.547			Fs			
Passband Ripple		± 0.05		dB			

4

Everest Semiconductor

Stopband Attenuation	-53			dB			
Double Speed							
Passband	0		0.417	Fs			
Stopband	0.583			Fs			
Passband Ripple		± 0.005		dB			
Stopband Attenuation	-56			dB			
Quad Speed							
Passband	0		0.2083	Fs			
Stopband	0.792			Fs			
Passband Ripple		± 0.006		dB			
Stopband Attenuation	-50			dB			
Analog Output Characteristics	Analog Output Characteristics						
Full Scale Output Level	2.0	2.3	2.5	Vpp			
Output Impedance		120		Ω			
Minimum Load Resistance		2		KΩ			
Maximum Capacitance		100		pF			

Note 1. A-weighted filter is used in measurement.

Serial Audio Port Switching Characteristics

PARAMETER	SYMBOL	MIN	MAX	UNIT
CLKIN Frequency			51.2	MHz
CLKIN Duty Cycle		40	60	%
LRCK Frequency			200	KHz
LRCK Duty Cycle		40	60	%
SCLK Frequency			26	MHz
SCLK Pulse Width Low	T _{SCKL}	15		ns
SCLK Pulse Width High	Т _{SCKH}	15		ns
SCLK Rising to LRCK Edge Delay	T _{LRH}	10		ns
SCLK Rising to LRCK Edge Setup Time	T _{RSU}	10		ns
SDATA Valid to SCLK Rising Setup Time	T _{SDS}	10		ns
SCLK Rising to SDATA Hold Time	T _{SDH}	10		ns

DC Characteristics

PARAMETER	MIN	ТҮР	MAX	UNIT		
Normal Operation Mode						
VDD Current VDD=3.3V		24		mA		
Digital Voltage Level						
Input High-level Voltage	2.0			V		
Input Low-level Voltage			0.8	V		
Output High-level Voltage		VDD		V		
Output Low-level Voltage		0		V		

5. PACKAGE INFORMATION

Court of	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	0.820	1.100	0.032	0. 043	
A1	0.020	0. 150	0. 001	0.006	
A2	0.750	0.950	0. 030	0. 037	
b	0. 180	0. 280	0. 007	0.011	
с	0.090	0. 230	0.004	0.009	
D	2.900	3.100	0.114	0. 122	
e	0.50(BSC)	0.020	(BSC)	
E	2.900	3.100	0.114	0. 122	
E1	4. 750	5.050	0. 187	0. 199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

6. Contact Information:

Everest Semiconductor Co., Ltd. 苏州工业园区金鸡湖大道 1355 号国际科技园, 邮编 215021 Email: info@everest-semi.com

